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Abstract 

 Surface water pollution has a significant, non-monotonic effect on the infant mortality rate 
in China. As surface water quality deteriorates, the infant mortality rate first increases and 
then decreases. Thus, moderate levels of pollution are the most dangerous. 
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Surface Water Quality and Infant Mortality in China 

Abstract 

Surface water pollution has a significant, non-monotonic effect on the infant 

mortality rate in China. As surface water quality deteriorates, the infant mortality 

rate first increases and then decreases. Thus, moderate levels of pollution are the 

most dangerous. 
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I. Introduction 

China’s rapid industrialization led to severe water pollution in many areas due to massive 

industrial wastewater discharges and extensive use of agricultural fertilizer. Even though about 

60 to 70 percent of river water is unsafe for human consumption (World Bank 2006), many 

people in poor areas rely on the surface water systems for daily use including drinking. 

Consequently, this water pollution endangers the health of the rural population, especially that of 

infants. Using data on surface water quality from monitoring sites in 19 provinces and county-

level infant mortality rate data from the 2000 Census, we estimate the effects of surface water 

quality on the infant mortality rate in China.  

We hypothesize that if surface water becomes slightly degraded, people do not notice the 

pollution and continue consuming it. Consequently, the infant mortality rate initially rises as 

water pollution increases. However, as the pollution gets worse, people begin to notice the 
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pollution using visual and other clues and reduce their consumption of surface water. As the 

degree of pollution becomes very pronounced and hence very apparent, the infant mortality rate 

falls. 

We discuss the literature on the effects of surface water quality on health in Section 2and 

Chinese surface water quality in Section 3. In Section 4, we describe the data set, define the key 

variables, and provide summary statistics. We analyze whether we are likely to face a sample 

selection problem and describe an ordered-probit model to deal with that issue in Section 5. In 

Section 6, we presents our estimates of the effects of surface water quality on the infant mortality 

rate using an ordered-probit selection model. We draw conclusions in Section 7. 

II. The Effects of Water Pollution on Health 

The health effects of water pollution has been an important research topic in environmental 

science, epidemiology, environmental economics, and health economics for centuries. The 

earliest research in this area dates to the 1850s (see Freedman 1991). Using a natural experiment 

based on the distribution of water in London, John Snow demonstrated that unsanitary water 

caused cholera outbreaks. He found that the death rate for dirty-water users were over eight times 

higher than that for the clean-water users. 

Many recent studies reported various connections between water pollution and diseases and 

other public health measures. Some studies focused on water pollution and water-borne diseases, 

such as typhoid (Cutler and Grant 2005) and diarrhea (Jalan and Rovalion 2003). Other studies 

explored the relationship between water pollution and cancer, such as Cantor (1997), Davis and 

Masten (2004), Chen et al. (2005), and Ebenstein (2012).  

Much of the research focused on infant and child mortality. Galiani et al. (2005) found that 

privatizing water service improves water quality, and reduces child mortality. Merrick (1985), 
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Lavy et al. (1996), and Lee et al. (1997) found positive associations between water quality and 

infant health. Greenstone and Hanna (2014) investigated the effects of air quality and water 

quality on the infant mortality rate in India, and found no significant relationship between the 

infant mortality rate and water quality. Brainerd and Menon (2012) reported a negative effect of 

fertilizer agrichemicals in water on infant and child health in India. Currie et al. (2013) found 

that contaminated drinking water has large and statistically significant effects on birth weight 

and gestation of infants born to less educated mothers.  

Several studies have examined people’s pollution avoidance behavior (Mansfield et al. 

2006; Shimshack et al. 2007; Neidell 2009; Moretti and Neidell 2011; Zivin et al. 2011). For 

example, Neidell (2009) found that when smog alerts were issued, attendance at major outdoor 

facilities in Los Angeles decreased significantly. Zivin et al. (2011) found that bottled water sales 

significantly increased when consumers were informed about tap water quality deteriorations (or 

violations) in Northern California and Nevada. These findings suggest that the provision and 

public dissemination of information about pollution can encourage the public to engage in 

avoidance behaviors to decrease exposure and minimize health risks. 

 

III. Surface Water Quality in China 

In China, the overall surface water quality is graded based on chemical pollutant indicators, 

including the pH-value and the concentrations (measured by mg/L) of dissolved oxygen, 

biochemical oxygen demand, ammonia, and nitrogen. The overall surface water quality is graded 

on a 6-degree scale, where Type I water is the best quality water and Type VI is the worst.  

According to the China Ministry of Water Resources, Type I water is an “Excellent” source 

of potable water. Type II water is a “Good” source of potable water. Type III water is “Fair.” 
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Because Type II and III water may have pathogenic bacteria and parasites ova, drinking that 

water may cause diseases. Type II and III water should be purified and treated (such as by 

boiling) before drinking. Type IV water is polluted and unsafe to drink without advanced 

treatment, which is only possible at water supply plants. Type V is seriously polluted and can 

never been used as for human consumption. Type VI water is called “Worse than Type V 

Water,” and any direct contact with it is harmful to humans.1  

Individuals can easily distinguish clean water from heavily polluted water, such as Types V 

and VI. Very polluted water is murky and smelly and may have algal blooms on the surface. 

Distinguishing “excellent” water from “good” or “fair” water is more challenging. 

Not all the harms from consuming polluted water are immediately apparent. Some effects 

occur at once, while others appear only after toxins have accumulated in the body. For example, 

consuming contaminated water can cause malaria outbreaks within days, but it may take decades 

for water pollution to cause cancers. In this study, we focus on infant deaths that occur within a 

year.  

IV. Data and Summary Statistics 

China established a nationwide water quality monitor water system in the 1980s. Each 

year, the Ministry of Water Resource publishes the China National Water Resource Yearbook, 

which provides water quality information for major lakes, rivers and reservoirs. Many provinces 

also publish province-level water-body quality measures. The national and provisional 

publications are the sources of water quality data used in this paper.  

                                                 

1 See the online appendix Table A1 for the limit values of water quality indicators.  
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We identified each water quality monitoring site’s location and matched it with the 2000 

Census data at the county-level.2 Our sample includes 461 counties in 19 provinces. The sampled 

provinces include Anhui, Beijing, Chongqing, Fujian, Guangxi, Guizhou, Hianan, Hebei, 

He’nan, Jiangsu, Jiangxi, Liaoning, Ningxia, Shandong, Shanghai, Sichuan, Tianjin, Yunnan and 

Zhejiang. Guangxi and Ningxia are in the Autonomous Region; Beijing, Chongqing, Shanghai 

and Tianjin are directly controlled municipalities; and the rest are governed at the provincial 

level. Northern provinces are relatively under-sampled because we could not find water quality 

data for several Northern provinces.  

The distribution of the six types of water quality is presented in Table 1. Nearly half (47 

percent) of the rivers and other bodies of water in our sample are seriously polluted (Types IV, 

V, and VI).  

The infant mortality rate is the annual number of deaths among infants (less than one year 

old) per thousand live births. The overall Chinese infant mortality rate has been decreasing at a 

rapid pace over the past forty years, from about 150 per thousand in the 1960s to around 20 per 

thousand in the 2000s.  

Neonatal death is the major component of infant deaths. About 60 to 70 percent of infant 

deaths occurred within the first month after they were born. Most of the deaths during the 

neonatal period are due to endogenous causes (inherited defects), such as congenital anomalies, 

gestational immaturity, birth complications, and other physiological problems. Lack of proper 

                                                 

2 There are five administrative levels in China. The highest level is the provincial level, which 
include provinces, autonomous regions, direct-controlled municipality, and special 
administrative regions (Hongkong and Macao). The second highest level of government is the 
prefecture level which includes prefectures, autonomous prefectures, prefecture-level cities and 
Leagues. Next is the county level, which includes counties, autonomous counties, county-level 
cities, and city districts. Below the county is the township level and the (informal) village level. 
The Census data are not available for these last two levels. 
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care during the pregnancy can cause neonatal deaths. For example, if pregnant women drink 

polluted water, the neonatal mortality may rise. The post-neonatal mortality rate describes the 

death rate of infants one month to one year. The vast majority of post-neonatal deaths are 

from exogenous causes, such as injuries, environmental and nutritional factors, especially as they 

interact with infectious disease like gastroenteritis and pneumonia. Water pollution may cause 

both neonatal and post-neonatal mortality. 

The infant mortality rate summary statistics are presented in Table 2. In our sample, the 

average the infant mortality rate across counties is 19.2 per thousand. The variation in infant 

mortality rates is large, with a standard deviation of 15.8. The distribution of infant mortality rate 

is skewed to the left, with a few counties out in the tail with considerably higher infant mortality 

rates than the average. The lowest infant mortality rate in our data is less than 1 per thousand, 

while the highest infant mortality rate is 81.2 per thousand.  

In general in China, female infants are more likely to die than are male infants. The female 

infant mortality rate is about 22 per thousand, and male infant mortality rate is about 17 per 

thousand. The difference is striking because male infants are usually more vulnerable and thus 

more likely to die than female infants on purely medical grounds. This difference is consistent 

with the popular argument that rural Chinese people prefer boys to girls so they invest more on 

male infants’ health. The variance of the female infant mortality rate is also higher than that of 

the male infant mortality rate.  

To isolate the effect of water pollution on health, we include a set of control variable from 

the 2000 Census of China: the percentage of the population that is non-agricultural, illiteracy 

rate, average rooms per home, and per capita housing area (square meters). We also include a 

few social-economic variables in the 2000 China Statistical Yearbook: per capita GDP (Chinese 
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Yuan), per capita government expenditure, and the number of beds in medical institutions per 

10,000 people. We show the summary statistics of these variables in Table 3.  

The non-agricultural share of the population that lives in non-agricultural areas (including 

the mobile population) to the total population. Urbanization, which reduces the non-agricultural 

share, has both positive and negative health effects, and the net impact on population is not 

obvious (see, for example, Van de Poel et al. 2009). It is generally believed that the positive 

consequences of urbanization outweigh the negative ones for infants’ health. Urbanization is 

associated with better sanitation and medical treatments, easier access to tap water and infant 

care, all of which play important roles in improving infant health. So, we expect a negative 

association between the percentage of non-agricultural population and the infant mortality rate.  

The illiteracy rate variable is the share of the total population over 15 who are illiterate 

(have not completed an elementary-school education). Many studies have found that infants are 

less likely to die the more educated are their parents, especially their mothers (Delgado et al. 

2002; Behrman et al. 2003; Basu and Stephenson 2005; Frost et al. 2005; Miguel 2005; Boyle 

2006; Cowell 2006; Cutler and Lleras-Muney 2006). 

Poor housing and overcrowding are negatively associated with infant health (Martin 1967; 

Brennan and Lancashire 1978; Victora, et al. 1988). We expect that as either of our measures of 

living conditions—the average number of rooms per household and the per capita housing area 

(square meters)—increases, the infant mortality rate falls.  

We expect per capita county GDP to be negatively correlated with the infant mortality rate. 

We use per capital government expenditure to approximate the local government’s investments 

on social welfare programs, such as public health insurance, sanitation maintenance, tap water 
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provision, waste management, and pollution treatment. We expect it to be negatively correlated 

with the infant mortality rate.  

We use the number of beds per 10,000 people in medical institutions as a measure of the 

availability of medical treatment. In regions where hospitals are readily available, the infant 

mortality rate should be lower. 

The reliability of the data collected by Chinese government is often questioned by academic 

researchers. Local governments in China have been criticized for hiding news from the public 

about water pollution accidents. Consequently, we examined the consistency of the data in three 

ways. 

In China, multiple agencies (e.g. the Ministry of Water Resource, the Environment 

Protection Agency, and the Center for Disease Control and Prevention) collected data on surface 

water quality. Since we do not know the raw data sources of different water quality reports, we 

first checked for consistency between reports of water quality data between national water 

resources reports and provincial water resources. We found that 98 percent of these paired 

reports are consistent, and the few differences are all within 1 water quality level. In the few case 

where they differ, we rely on the data from the provincial water resource reports.3 

Second, we compared a subsample of the our 2004 water quality data with 2004 water 

quality data provided by the World Bank, which is used in Ebenstein’s (2012) paper. The data 

are almost always identical for comparable monitoring sites.  

Third, several monitoring sites’ data are provided by the River Basin Water Quality 

Reports. Again, we found no substantial difference between these and other sources. 

                                                 

3 If we drop these observations, we obtain the same qualitative results reported below. 
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Thus, the various reports on water quality are consistent. In the past several years, the 

government has trumpeted its efforts to promote the transparency of surface water quality 

information. For example, the central government started to release weekly water quality report 

for 100 national monitoring sites to the public in 2004, and it started to publicize real-time water 

quality data in 2009. 

V. Sample Selection 

To estimate the effects of water pollution on health consistently, we need to avoid sample 

selection bias due to endogenous migration. Ebenstein (2012) suggests that China provides an 

ideal context to estimate the health effects of water pollution because of the Household 

Registration System (Hukou). This system prevents people from moving from rural to urban 

areas. It also makes it relatively difficult to move within rural and urban areas. A variety of 

benefits, such as health care and social security, are associated with the Household Registration 

System. If the system were to prevent people from migrating, we could treat people’s location 

and thus the water quality they face as exogenous.  

Although this argument may have held in the past, the share of people migrating increased 

by more than an order of magnitude between the 1982, when it was 0.66 percent according to the 

Census, and 2000 when it was 7.9 percent. Given that many rural migrant workers are of 

childbearing age, if the migration decision is correlated with water pollution levels, we may face 

a selection problem.  

We address the potential sample selection problem using a Heckman-type selection model. 

In the first step, we estimate the relationship between the endogenous water pollution on the 

instrument variables. Conditional on the estimates from the first step, we estimate the effects of 

water pollution on the infant mortality rate in the second step.  
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We use wastewater dumping and precipitation as instruments for surface water quality. 

Industrial wastewater dumping degrades surface water quality. We use the amount of untreated 

wastewater discharged into the water system at the prefectural level as an instrument for the 

water quality in a given county. We treat the prefecture-level wastewater dumping as an 

exogenous variable at the county level because a county takes the total amount of discharged 

wastewater as given.4 

Precipitation is one of the most important factors that influence surface water quality. 

Where rainfall is heavy, surface water quality is typically good. Precipitation affects surface 

water quality through two primary channels. First, rain directly dilute the concentration of water 

pollutants, and thus improves water quality. Second, rain causes the river to flow faster, which 

carries away water pollutant quickly and makes the river less prone to eutrophication (Zhong et 

al. 2005).  

China has seven major river basins: Changjiang (Yangtze) River Basin, Huang River Basin, 

Zhujiang River Basin, Huai River Basin, Songhuajiang River Basin, Liao River Basin and Hai 

River Basin. Surface water quality in the southern river basins is better than that in the northern 

river basins because southern China has more rain. In our sample, the average yearly 

precipitation in the northern provinces (Beijing, Tianjin, Hebei, Liaoning and Ningxia) is 458 

mm, with a standard deviation of 148 mm. In contrast, the average precipitation in the rest of the 

provinces is 1,286 mm with a standard deviation of 417 mm.  

In Figure 1, we show the proportion of the river segments that were seriously polluted 

(Type IV, V, and VI) from 1991−2005. Roughly 60 to 70 percent of rivers in northern China 

                                                 

4  A prefecture usually includes dozens of counties. Ideally, we would like to use the total 
wastewater discharged in all other counties within the same prefecture as the instrument variable 
for a particular county. Unfortunately, we cannot obtain county-level wastewater data. 
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(Huai River, Hai River, Songhuajiang River, Liao River) were severely polluted. In contrast, in 

southern river basins, such as the Changjiang River basin and Zhujiang River basin, the 

proportion of polluted river segments was much lower.  

Although precipitation has a large effect on surface water quality, for it to be a valid 

instrument, it must affect surface water quality but not be correlated with the error term in our 

infant mortality rate equation. Our primary concern is that rainfall fluctuations may affect infant 

health through other channels besides surface water effects. For example, some studies have 

argued that an increase in rainfall increases agricultural production, lowering food prices, and 

increasing nutrient intake and hence health.5 Although this argument sounds plausible, it is 

unlikely to be a problem in our study for two reasons.  

First, small shocks in agricultural production induced by rainfall variations do not cause 

infant to die, unless the households are extremely poor and heavily depend on the food or the 

resulting income to survive. Recent studies that investigate the relationship between rainfall and 

health outcomes found a mixture of positive, negative, and non-significant results.6 Studies that 

found a significant effect of rainfall fluctuations (within its usual range) on the infant mortality 

rate always focused on poor and arid or semiarid regions. In contrast, all the counties in our 

sample are located in relatively water-abundant areas, where the irrigation process mainly relies 

on the surface water system instead of rainfall. So it is unlikely that rainfall affects the infant 

mortality rate through its impact on agricultural production.  

                                                 

5 The link between rainfall and agricultural income has been investigated in the literature. For 
example, Levine and Yang (2006) showed that more rainfall increases rice output in Indonesia. 
Duflo and Udry (2004) looked at how men and women’s income and spending change when the 
yields of different crops vary due to their different sensitivity to rainfall. 
6 The details of these studies are in appendix Table A2.  
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When we regress agriculture production per capita on precipitation, the estimated 

coefficient on precipitation is -24.5 (a 100 mm increase in precipitation is associated with a 24.5 

Yuan decrease in per capital agricultural production) with a t-statistic of –0.99.7 Thus, we 

conclude that rainfall is not correlated with agriculture production in our sample.  

Second, even in arid and semiarid regions, where water scarcity reduces agricultural 

production, the primary channel by which rainfall affects the infant mortality rate is not through 

its impact on agriculture production. For example, Bhalotra (2010) found that in rural areas of 

India income shocks have significant negative effects on the infant mortality rate. However, 

when he controlled for rainfall, the income effect did not change, suggesting that the effect of 

aggregate income on rural the infant mortality rate is not driven by agriculture income. In Rocha 

and Soares’s (2012) study, irrespective of how they introduced agricultural production in the 

regression, the impact of rainfall variations on health at birth was not affected, also suggesting 

that agricultural income does not affect the infant mortality rate. Instead, they found that the 

negative impact of rainfall on the infant mortality rate would be greatly reduced by using piped 

water. Thus if people no longer use contaminated water, rainfall itself would not harm infant 

health.  

Ebenstein (2012) investigated the effects of water pollution on digestive cancer in China 

and found that precipitation has only a very weak relationship with other disease mortality rates 

except for digestive and lung cancer rates, and found almost no relationship between rainfall and 

cancer rates in areas with high rate of tap water. His results also showed that the effect of rainfall 

variations on people’ health is primary due to its impact on the surface water.  

                                                 

7 Regression results are reported in online appendix Table A3.  
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In this study, if we include per capita agriculture production as a control variable, we find 

that it is not statistically significant and that the estimates of the effect of water quality on the 

infant mortality rate are unchanged. Thus, we believe that precipitation is a valid instrument and 

that rainfall affects infant health through its impact on surface water quality. We also verified 

that in 1999 and 2000 no catastrophic natural disaster such as severe droughts or floods occurred 

in the sampled counties. 

We use a two-step sample selection model to estimate the infant mortality rate conditional 

on surface water quality. In the first step, we estimate the water quality using an ordered probit 

model. If people move in response to the local water quality, the water pollution level is 

endogenous.  

Because the number of observations of Type I water is relatively small (Table 1), we 

aggregate Type I and Type II water into a single group, which leaves us with five water quality 

categories. Each County i has water quality in Category 1 (Type I and Type II), Category 2 

(Type III), Category 3 (Type IV), Category 4 (Type V), or Category 5 (Type VI), ranging from 

good quality to bad, We estimate the water quality using an ordered-probit: 

ݎ݁ݐܽݓ
∗ ൌ ࢠᇱߙ                                                                    (1)	ݑ

ݎ݁ݐܽݓ ൌ

ە
ۖ
۔

ۖ
ۓ
1		݂݅ െ ∞ ൏ ݎ݁ݐܽݓ

∗  ,ଵߤ
ଵߤ					݂݅		2 ൏ ݎ݁ݐܽݓ

∗  ,ଶߤ
ଶߤ					݂݅		3 ൏ ݎ݁ݐܽݓ

∗  ,ଷߤ
ଷߤ					݂݅		4 ൏ ݎ݁ݐܽݓ

∗  ,ସߤ
ସߤ					݂݅		5 ൏ ݎ݁ݐܽݓ

∗ ൏ ∞		

	                                 (2) 

where ݎ݁ݐܽݓ
∗ is the unobserved latent selection variable (actual water quality), ࢠ are a set of 

variables that affect water quality, ݑ is a normal disturbance; ݎ݁ݐܽݓ is the observed 5-degree 

water quality scale, and the unobserved cutoffs satisfy μଵ ൏ μଶ ൏ μଷ ൏ μସ.  
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The infant mortality rate ܴܯܫ is a linear function of the independent variables ࢞, the 

demographic, social-economic variables, conditional on the water quality level. We estimate 

separate coefficients of ࢞ for each category	ݎ݁ݐܽݓ: 

ܴܯܫ ൌ

ە
ۖ
۔

ۖ
ଵߚۓ

ᇱ࢞  ߳ଵ ݎ݁ݐܽݓ	݂݅		 ൌ 1,

ଶߚ
ᇱ࢞  ߳ଶ ݎ݁ݐܽݓ	݂݅		 ൌ 2,

ଷߚ
ᇱ࢞  ߳ଷ ݎ݁ݐܽݓ	݂݅		 ൌ 3,

ସߚ
ᇱ࢞  ߳ସ			݂݅	ݎ݁ݐܽݓ ൌ 4,

ହߚ
ᇱ࢞  ߳ହ		݂݅	ݎ݁ݐܽݓ ൌ 5

	                                  (3) 

where for each water quality category j, ߳  has mean 0 and variance ߪ
ଶ, and is bivariate normal 

with ݑ. The correlation between ߳  and ݑ is ߩ for group j. We assume that ߳  and ݑ are 

independently and identically distributed across observations. 

We estimate this model using a two-step estimation procedure (Greene 2002) which  is a 

generalization of Heckman’s (1979) binary-model estimator.8 Define: 

ߣ ≡ ,ݎ݁ݐܽݓ|ݑሺܧ ሻࢠ ൌ
 ሺݎ݁ݐܽݓ

∗ െ ݎ݁ݐܽݓሻ߶ሺࢠᇱߙ
∗ െ ሻࢠᇱߙ ݎ݁ݐܽݓ݀

∗ఓೕశభ
ఓೕ

Φ൫ߤାଵ െ ൯ࢠᇱߙ െ Φ൫ߤ െ ൯ࢠᇱߙ

ൌ
߶൫ߤ െ ൯ࢠᇱߙ െ ߶൫ߤାଵ െ ൯ࢠᇱߙ

Φ൫ߤାଵ െ ൯ࢠᇱߙ െ Φ൫ߤ െ ൯ࢠᇱߙ
 

(4) 

                                                 

8 There are two popular approaches in estimating the probit selection model: the full information 
maximum likelihood (FIML) approach and the two-step approach. In a binary selection case, 
Puhani (2000) found that FIML is usually more efficient than the two-step estimator. However, 
in an ordered probit selection model, such as we use, Chiburis and Lokshin (2007) found that the 
two-step estimator is more robust and is the better choice for almost all practical applications.  
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where ߶ is the standard normal density function, and Φ is the standard normal cumulative 

distribution function. Then the expectation of infant mortality rate, conditional on all the 

observed factors, is 

,ݎ݁ݐܽݓ|ܴܯܫሾܧ      ,ࢠ ሿ࢞ ൌ ߚ
ᇱ࢞  ൫߳ܧ หݎ݁ݐܽݓ ൌ ݆, ൯ࢠ ൌ ߚ

ᇱ࢞ߩߪߣ       (5) 

Thus, if we only regress ܴܯܫ on ࢞ over the subsample {i: ݎ݁ݐܽݓ ൌ ݆}, without taking into 

account of ߣ, the estimation will be inconsistent if ߩ ് 0.  

For the ordered-probit selection model to be identified, ࢠ must contain at least one variable 

that is not in ࢞. That is, we must have at least one instrument ݖ for the selection variable ݎ݁ݐܽݓ 

(observed water quality) that is a significant determinant of water quality yet satisfies the 

exclusion restriction Cov൫ݖ, ߳൯ ൌ 0 for all j. We use wastewater dumping, rainfall, and their 

squares as instruments for water quality level. 

In the first step, we estimate (2) by an ordered probit of ݎ݁ݐܽݓ on	ࢠ, yielding the 

consistent estimates ߙො and ̂ߤ. Define ݎ݁ݐܽݓෟ 
∗ ൌ   byߣ . Using (4), we consistently estimateࢠ′ොߙ

መߣ ൌ
߶൫̂ߤ െ ෟݎ݁ݐܽݓ 

∗൯ െ ߶൫̂ߤାଵ െ ෟݎ݁ݐܽݓ 
∗൯

Φ൫̂ߤାଵ െ ෟݎ݁ݐܽݓ 
∗൯ െ Φ൫̂ߤ െ ෟݎ݁ݐܽݓ 

∗൯
																																							ሺ6ሻ 

for ݆ ൌ   .ݎ݁ݐܽݓ

By using the observations ݅ for which ݆ ൌ  መߣ , an OLS regression of IMR on x andݖ

provides a consistent estimate of ߚ
ᇱ.  

Moreover, ߪ can be estimated by  

ොߪ ≡
1

݊
ቌܴܵ ܵ െ መܥ

ଶ 
መߣ߲

ෟݎ݁ݐܽݓ߲ 
∗

:ୀ

ቍ 

ൌ
ܴܵ ܵ

݊
െ
መܥ
ଶ

݊
ቊ
൫̂ߤ െ ෟݎ݁ݐܽݓ 

∗൯߶൫̂ߤ െ ෟݎ݁ݐܽݓ 
∗൯ െ ൫̂ߤାଵ െ ෟݎ݁ݐܽݓ 

∗൯߶൫̂ߤାଵ െ ෟݎ݁ݐܽݓ 
∗൯

Φ൫̂ߤାଵ െ ෟݎ݁ݐܽݓ 
∗൯ െ Φ൫̂ߤ െ ෟݎ݁ݐܽݓ 

∗൯
ቋ 
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(7) 

where ݊ is the number of observations in which equation j is observed, ܥመ  is the coefficient on 

ܴܵ መ,  andߣ ܵ is the residual sum of squares for the regression. Because ܥመ  is a consistent 

estimator of ߩߪ, we have a consistent estimator for ߩ:  

ොߩ ≡
ఫܥ
ොఫߪ
.


																																																																											ሺ8ሻ 

VI. Estimations 

We report the regression results in Table 4. In the first step, we regress water quality on 

the explanatory variables ࢠ, which include our four instrument variables (precipitation, 

wastewater dumping and their squares) and all the demographic, social-economic ࢞. The 

estimated coefficients of the four instrument variables are all statistically significant. Both 

precipitation and wastewater dumping have strong effects on surface water quality.9 

In the second step, we estimate the relationship between ܴܯܫ and the independent 

variables ࢞, taking into account the first-step estimates ߣመ.  

The estimated coefficients of ࢞ vary across different groups. The percentage of non-

agricultural population is statistically significant in Type I or II, Type IV and Type V areas. It is 

negatively correlated with the infant mortality rate, as expected. On average, a 10 percent 

increase in non-agricultural population is associated with roughly a 1.9 per thousand drop in the 

infant mortality rate in Type I or II areas. The estimated coefficients for Type IV and V areas are 

1.6 and 2.4 per thousand, respectively.  

                                                 

9 The relationship between water quality and the instrumental variables are similar if we treat 
water quality as a continuous variable and estimate the relationship using OLS. See appendix 
Table A4 for the regressions results. 
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A higher illiteracy rate statistically significantly increases the infant mortality rate in all 

regressions. As the illiteracy rate increases by 1 percent, the infant mortality rate falls by roughly 

1 per thousand.  

Housing and living conditions are typically negatively correlated with the infant mortality 

rate. Both the average number of rooms per household and the per capita housing area are 

statistically significantly associated with the infant mortality rate. For example, if each household 

in Type I or II areas has one more room at home, the infant mortality rate will fall by 3.8. If per 

capita housing area in Type I or II areas increases by 10 square meters, the infant mortality rate 

will decrease by 4.0 per thousand. As per capita GDP goes up, the infant mortality rate goes 

down. An increase of one thousand Yuan (about 150 US dollars) in per capita GDP is associated 

with a 0.17 to 0.64 per thousand fall in the infant mortality rate, depending on which group is 

chosen.  

Given that the sample selection terms (ߣ) are statistically significant in the Type IV and 

Type VI equations, if we did not explicitly take sample selection into account by using OLS, our 

estimates of the effects of water pollution on the infant mortality rate would be biased.  

We can predict the expected infant mortality rate  ܯܫܴ ൌ መߚ
ᇱ࢞ for each category, and 

calculate the averages and differences of the predicted the infant mortality rate for each category. 

Using the estimates in Table 4, we find the average predicted the infant mortality rate ݕො	ഥ  for the 

five types of water are respectively 20.3, 24.0, 14.9, 12.1, and 5.8 per thousand. That is, the 

highest the infant mortality rate is associated with Type III water. In the cleanest areas (Type I or 

II) and most polluted areas (Type IV V and VI), the infant mortality rate is lower. The 

relationship between water quality and the infant mortality rate is non-monotonic, and the most 

polluted areas (Type VI) have the lowest the infant mortality rate. On average, the infant 
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mortality rate in the Type I or II areas is 3.7 per thousand lower than that in the Type III areas; 

and the infant mortality rate in the Types IV, V and VI areas are respectively 9.1, 11.9, and 18.2 

per thousand lower than that in the Type III areas.  

Our goal is to estimate the effects of water quality on the infant mortality rate. An 

alternative, perhaps better, method is to calculate the counterfactual ܯܫ෫ܴ for equation j, if all 

observations were to switch to category j. Specifically, we predict: 

෫ܴܯܫ ൌ መߚ
ᇱ࢞ߩොߪොߣመ                                           (9) 

where ߣመ is calculated as in (6), using the actual ݎ݁ݐܽݓ.  

The counterfactual ܯܫ෫ܴ tells us what the infant mortality rate would be if all observations 

were to switch to different levels of water pollution. We report the five predicted counterfactual 

average the infant mortality rate in Row (1) of Table 5. If we switch all observations to the Type 

I or II area, the average the infant mortality rate would be 18.7 per thousand. The corresponding 

mortality rates are 24.8 per thousand f we switch all observations to the Type III area, the infant 

mortality rate16.9 per thousand for the Type IV area, 15.1 for the Type V area, and 4.6 for the 

Type VI area.  

We still use the Type III areas as the reference group, and compare its the infant mortality 

rate with that in other groups. The differences in Row (2) in Table 5 show the estimated effects 

of water quality on the infant mortality rate in the selection model. If water quality changes from 

Type I or II to Type III, the infant mortality rate will increase by about 6.0 per thousand. 

Changing water quality from Type III to Type IV decreases the infant mortality rate by 7.9 per 

thousand. The most polluted areas (Type VI) have the lowest the infant mortality rate rates. If 

water quality deteriorates from Type III to Type VI, the infant mortality rate  drops by 20.2 per 

thousand.  
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We also estimated the ordered probit selection model by gender. We calculated the 

counterfactual average the infant mortality rate for each category and the differences between 

them, using Type III areas as the reference group. The results for male infants are reported in 

Row (4) and (5) in Table 5. Changing water quality from Type I or II to Type III would increase 

male the infant mortality rate by roughly 9.7 per thousand. As water quality deteriorates from 

Type III to Type IV, V and VI, male the infant mortality rate will drop by 7.1, 8.1 and 15.1 per 

thousand, respectively. The estimates for female infants are reported in Row (7) and (8) in Table 

5. The results are slightly different. Changing water quality from Type I or II to Type III would 

not significantly increase female the infant mortality rate: The difference is only about 1.1 per 

thousand. However, as water quality becomes more polluted, changing from Type III to Type IV, 

V and VI, female the infant mortality rate would drop dramatically, with the respective estimated 

magnitudes of –8.8, –11.6, and –26.3 per thousand. The estimate of the effect of water pollution 

on the female  infant mortality rate is greater than that for the male  infant mortality rate. Female 

infants benefit more than males from water quality falling from fair to polluted.  

We compared our sample-selection model results to an OLS regression model:  

 IMR ൌ ߚ 	 1ܦଵߚ 	 2ܦଶߚ 	 3ܦଷߚ  4ܦସߚ 	ߚହ
ᇱ࢞ 		ɛ,           (10) 

where IMR is the infant mortality rate in county i, ࢞ is a vector of covariates, D1 is a dummy 

equal to 1 is a county has Type I or II water,  D2 = 1 if it has Type IV water, D3 = 1 if it has  Type 

V water, and D4 = 1 if it has Type VI water. Type III water is the reference group.  

The regression results from OLS are reported in Table 6. The relationship between water 

quality and the infant mortality rate is non-monotonic in the OLS regressions. Based on the OLS 

estimates, changing water quality from Type I or II to Type III is associated with 4.0 per 

thousand drop in the infant mortality rate; and as water quality deteriorates from Type III to Type 
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IV, V, and VI, the associated the infant mortality rate would drop by 5.7, 7.7 and 8.0 per 

thousand, respectively.  

The less flexible OLS model underestimates the effects of water pollution on the infant 

mortality rate, especially for the more polluted areas. For example, as water quality deteriorates 

from Type III to Type VI, the OLS estimates indicate the infant mortality rate would decrease by 

only 8 per thousand, whereas the ordered profit selection model predicts it would drop by 20 per 

thousand.  

 Assuming that people cannot perceive water quality changes between Type I or II and 

Type III, the associated 6.0 per thousand increase in the infant mortality rate can be interpreted 

as the pure health effect of water pollution. In other words, we find that a one-degree 

deterioration of water quality leads to about 30% increase in the infant mortality rate. Is this 

result plausible? To answer this question, we conduct a crude calculation on the magnitude of 

water quality changes from Type I or II to Type III.  

 According to the Environmental Surface Water Quality Standard in China, a reduction in 

water quality from Type I to Type III approximately corresponds to (using Type I as reference) a 

33-percent decrease in the concentration of dissolved oxygen (DO), a 200-percent increase in the 

concentration of Potassium permanganate (KMnO4), a 33-percent increase in the concentration 

of chemical oxygen demand (COD), a 560-percent increase in the concentration of Ammonia 

Nitrogen (NH3-N), a 900-percent increase in the concentration of Total phosphorus (TP), a 400-

percent increase in the concentration of Total nitrogen (TN). The changes in the concentrations 

for other pollutants are even more pronounced. For example, the maximum allowed number of 

fecal coliform for Type I water is 200 per liter, and it is 2,000 per liter for Type II water, and this 

maximum number increases to 10,000 per liter for Type III water. Thus, the actual change in 
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water quality from Type I to Type II to Type III, even though cannot be visually detected, is 

huge.  

 The large effect of water pollution on the Chinese infant mortality rate is consistent with 

the findings of studies covering other countries. Cutler and Miller (2005) argued that the 

adoption of clean water technologies such as filtration and chlorination was responsible for up to 

a 75 percent reduction in  the infant mortality rate in early twentieth century America. Galiani et 

al. (2005) found that privatization of water supply in Argentina reduced the mortality of children 

under age 5 by 26 percent. Brainerd and Menon (2012) found that a 10 percent increase in the 

average of fertilizer chemicals in water in the month of conception increased the infant mortality 

rate by 4 percent, and neo-natal mortality by 7 percent.  

Our study has two data limitations. We lack data on non-water pollution by county and on 

alternative sources of drinking water. However, we believe that our key qualitative result of a 

non-monotonic relationship between surface water and the infant mortality would hold even if 

such data were available. 

First, if other types of pollution are correlated with water pollution, our estimated effects 

for surface water may reflect the combined effects of exposure to a range of environmental 

pollutants and risks. However, other types of pollution, such as air pollution and toxin 

accumulation, usually have a monotonic effect on health. While people can protect themselves 

from being harmed by polluted water at relatively low cost (such as by boiling the water or using 

ground water), avoiding the harms of polluted air and many other types of pollution can be costly 

and less effective. Given that water pollution is positively correlated with other types of 

pollution, the non-monotonic relationship we find between polluted water and infant mortality is 

unlikely to be a result from other types of pollution. 



22 

Second, due to a lack of detailed data on alternative water sources such as ground, tap, and 

bottled water at the county level, we are unable to explore the exact channels through which 

people can mitigate the harms of polluted surface water. If detailed information about alternative 

water sources were available, we could estimate how people substitute between surface water 

and the various more expensive alternative sources of water. However, lacking such data, our 

study shows that people substitute away from extremely dangerous surface water—we just do 

not know to which alternative. If they did not substitute, the death rates would be very high. 

VII. Conclusions 

We show that the relationship between surface water quality and the infant mortality rate is 

non-monotonic in China. As surface water quality deteriorates, the infant mortality rate first 

increases and then decreases. The infant mortality rate is the highest in areas where surface water 

quality is fair. This finding is robust to a variety of specifications and models.  

Our explanation is that, as surface water deteriorates from a good level, people do not 

detect a quality change and continue to consume the water, so more infants die. As the water 

pollution increase more, the low quality becomes obvious, so people reduce their usage of 

polluted water, and more infants survive.  

We find strong evidence supporting this argument. Both the OLS and the ordered-probit 

selection models show that the infant mortality rate is highest when water quality is fair. In 

regions with cleaner or more polluted water, the infant mortality rate is lower. The infant 

mortality rate is the lowest in regions with the most polluted surface water (Type V and Type 

VI), suggesting that avoidance behavior significantly mitigates the health risks from water 

pollution.  



23 

An important policy implication of this study is that the Chinese government should 

intervene in regions where the surface water is moderately polluted. The government could 

provide health information or, even better, provide safe tap water, to those regions in which 

public awareness of water pollution is low but health risks are high.  
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Table 1. Water Quality Distribution in the Sample 
Water Quality Type I Type II Type III Type IV Type V Type VI Total 
Frequency 23 132 90 60 59 97 461 
Percent 4.99 28.63 19.52 13.02 12.8 21.04 100 
Sources.-China Water Quality Yearbooks(2000). 
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Table 2. Chinese Infant Mortality Rates (per thousand) 

  Mean Std. Dev. 25% Quantile 50% Quantile 75% Quantile 
All 19.23 15.82 8.64 14.62 25.31 
Male 16.97 13.44 7.89 13.63 21.81 
Female 21.97 20.42 8.61 15.17 29.47 
Source.-China 2000 Census. 
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Table 3. Summary Statistics of the Explanatory Variables 
Variable Mean Std. Dev. Min Max 
Precipitation (100 mm) 11.08 5.07 1.15 24.60 
Wastewater Dumping 19.29 11.34 0.42 47.38 
Non-Agricultural Population (%) 30.16 26.55 4.38 97.40 
Illiteracy Rate 9.52 6.15 1.57 48.34 
Rooms per Household 2.60 0.58 1.50 4.92 
Housing Area per capita (sq.m.) 23.47 6.48 9.47 45.64 
GDP per capita (Yuan) 9.25 8.20 0.82 55.84 
Government Expenditure per capita 0.78 0.93 0.02 9.49 
Hospital Beds per 10,000 people 32.32 23.39 5.98 161.58 
Sources.-China 2000 Census and China Provincial Statistical Yearbooks (2000). 
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Table 4. Infant Mortality Rate Ordered-Probit Selection Model 
First Step (Water Quality) Second Step (Infant Mortality Rate by Water Type) 

I or II III IV V VI 
Precipitation -0.271*** - - - - - 
(100 mm) (0.05) - - - - - 

Precipitation Sq. 
0.006*** - - - - - 

(0.00) - - - - - 
Dumping 0.033** - - - - - 

(0.02) - - - - - 
Dumping Sq. -0.001*** - - - - - 

(0.00) - - - - - 
Non-Ag Pop (%) 0.006** -0.185*** -0.007 -0.164* -0.243*** -0.023 

(0.00) (0.07) (0.11) (0.09) (0.07) (0.06) 
Illiteracy (%) 0.022** 0.925*** 1.330*** 1.053*** 1.296*** 1.000***

(0.01) (0.20) (0.35) (0.28) (0.37) (0.18) 
Rooms 0.236** -3.813* 1.005 0.251 -5.964** -0.734 

(0.11) (2.31) (3.12) (3.93) (2.60) (2.06) 
Housing Area -0.008 -0.401*** -0.597** -0.580* -0.586** -0.33 

(0.01) (0.15) (0.28) (0.31) (0.26) (0.31) 
GDP pc 0.021* -0.323 -0.644* -0.26 -0.169 -0.463* 
(1,000 Yuan) (0.01) (0.21) (0.37) (0.33) (0.14) (0.28) 
Gov. Exp. pc 0.004 -2.223 2.134 -1.585 -0.934 -0.872 

(0.08) (2.45) (5.50) (2.64) (0.97) (2.07) 
Hospital Beds -0.002 0.04 -0.025 0.204 0.224** 0.008 
(per 10,000) (0.00) (0.05) (0.10) (0.14) (0.11) (0.07) 

λi - -0.994 -0.106 9.552*** 3.309 10.20***
  - (3.04) (2.94) (3.40) (2.06) (2.78) 
Observations 460 ρ0=-0.09 ρ1=-0.01 ρ2=0.66 ρ4=0.37 ρ5=0.79 
Note.-The relationship between infant mortality and surface water quality is estimated by an 
ordered-probit sample-selection process using a two-step consistent estimator. Standard errors 
are reported in parentheses. 
*** Significant at 1% level. 
** Significant at 5% level. 
* Significant at 10% level.  
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Table 5. The Effects of Water Quality on the Infant Mortality Rate  
      Type I or II Type III Type IV Type V Type VI 
Overall (1) Counterfactual Aver. 18.73 24.76 16.89 15.09 4.57 

(2) Differences -6.03 -7.86 -9.67 -20.19 
  (3) OLS Estimates -3.96 -5.68 -7.68 -7.96 
Male (4) Counterfactual Aver. 12.79 22.46 15.36 14.40 7.38 
Infant (5) Differences -9.67 -7.10 -8.06 -15.08 
  (6) OLS Estimates -4.55 -5.30 -6.70 -6.02 
Female (7) Counterfactual Aver. 26.43 27.55 18.67 15.96 1.28 
Infant (8) Differences -1.12 -8.87 -11.59 -26.26 
  (9) OLS Estimates -3.10 -6.19 -8.90 -10.28 
Note.-This table compares the differences in infant mortality for each water quality type using 
estimates from both ordered probit selection model and OLS. Type III water is used as the 
reference group.  
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Table 6. OLS Regression Results on the Infant Mortality Rate 

  Infant Mortality Rate 
Overall Male Female 

Type I or II -3.964** -4.552*** -3.102 
(1.74) (1.56) (2.26) 

Type IV -5.682*** -5.304*** -6.187** 
(2.19) (1.99) (2.73) 

Type V -7.683*** -6.699*** -8.895*** 
(1.98) (1.66) (2.69) 

Type VI -7.956*** -6.018*** -10.28*** 
(1.88) (1.74) (2.27) 

Non-Agricultural Population (%) -0.128*** -0.081*** -0.187*** 
(0.03) (0.02) (0.04) 

Illiteracy Rate (%) 1.054*** 1.026*** 1.066*** 
(0.13) (0.11) (0.17) 

Ave. Rooms per Household -2.678** -1.883** -3.586*** 
(1.02) (0.91) (1.39) 

Housing Area per capita -0.356*** -0.166** -0.587*** 
(0.08) (0.07) (0.12) 

GDP per capita (1000 Yuan) -0.356*** -0.352*** -0.367*** 
(0.09) (0.08) (0.11) 

Gov. Exp. per capita (1000 Yuan) -0.339 -0.226 -0.439 
(0.56) (0.51) (0.71) 

Hospital Beds per 10,000 people 0.007 0.033 -0.023 
(0.03) (0.02) (0.04) 

F-Statistics 36.81 31.76 35.28 
R2 0.49  0.48  0.43  
Number of Observations 460 460 460 
Note.-The relationship between infant mortality and surface water quality is estimated by a set of 
ordinary least square (OLS) regressions. Huber-White robust standard errors are reported in the 
parenthesis. 
*** Significant at 1% level. 
** Significant at 5% level. 
* Significant at 10% level.  
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Figure 1. Polluted Segment of the Main Water System in China  
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Online Appendix  
 

Table A1. Surface Water Environmental Quality Standard: Limit Values 
Classifications I II III IV V 

PH values 6-9 

Dissolved oxygen ≥ 7.5 6 5 3 2 

Hypermanganate index ≤ 2 4 6 10 15 

COD ≤ 15 15 20 30 40 

BOD5 ≤ 3 3 4 6 10 

NH3-N ≤ 0.15 0.5 1 1.5 2 

Total phosphorus 
0.02 0.1 0.2 0.3 0.4 

(Lakes  
0.01) 

(Lakes  
0.025) 

(Lakes  
0.05) 

(Lakes  
0.1) 

(Lakes  
0.2) 

Total nitrogen ≤ 0.2 0.5 1 1.5 2 

Cu ≤ 0.01 1 1 1 1 

 Zn ≤ 0.05 1 1 2 2 

Fluoride ≤ 1 1 1 1.5 1.5 

Se ≤ 0.01 0.01 0.01 0.02 0.02 

As ≤ 0.05 0.05 0.05 0.1 0.1 

Hg ≤ 0.00005 0.00005 0.0001 0.001 0.001 

Cd ≤ 0.001 0.005 0.005 0.005 0.01 

Hexavalent chrome ≤ 0.01 0.05 0.05 0.05 0.1 

Pb ≤ 0.01 0.01 0.05 0.05 0.1 

Cyanide ≤ 0.005 0.05 0.2 0.2 0.2 

Volatile hydroxybenzene ≤ 0.002 0.002 0.005 0.01 0.1 

Petroleum ≤ 0.05 0.05 0.05 0.5 1 

Anionic surface-active agent ≤ 0.2 0.2 0.2 0.3 0.3 

Sulfide ≤ 0.05 0.1 0.05 0.5 1 

Coliform group (pieces/L) ≤ 200 2000 10000 20000 40000 

Sources.-Standard GB3838-2002, State Environment Protection Administration of PR China and 
General Administration for Quality Supervision, Inspection and Quarantine.  
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Table A2. The Effects of Rainfalls on the Infant Mortality Rate 
Study Outcome 

Variables 
Explanatory 
Variables 

Data Conclusions 

Aguilar 
and 
Vicarelli 
(2011) 

Cognitive 
tests, 
anthropome
tric 
variables, 
health 
indicators 

Exogenous 
excessive rainfall 
shocks. 

Individual 
survey data 
from 506 
rural 
communities 
in Mexico 

Children born in years and 
regions affected by excessive 
rain experience have slower 
anthropometric growth and 
cognitive development. 

Baird et 
al. (2007) 

Infant 
Mortality 
Rate 

Rainfalls, per capita 
GDP, 
characteristics of 
women, conflict, 
quality of 
institution, etc.  

Birth data in 
59 developing 
countries 

Rainfall shocks have no 
significant effect on infant 
mortality. 

Friedman 
(2010) 

Infant 
Mortality 
Rate 

Daily temperature 
and rainfalls 

Birth data in 
47 South 
African 
countries 

Excess rainfall is both 
detrimental and protective 
depending on the timing in 
which it occurs. 

Kovats 
and 
Wilkinson 
(2004) 

Morality by 
Age and by 
Cause of 
Death 

Daily rainfalls, 
temperature, and 
season, trend, 
holidays and air 
pollution. 

Birth data in 
New Delhi 

Any increase in rainfall 
increases the risk of infectious 
disease mortality in the near 
term. 
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Table A2 (continued). The Effects of Rainfalls on the Infant Mortality Rate 
Study Outcome 

Variables 
Explanatory 
Variables 

Data Conclusions 

Kim 
(2009) 

Infant 
Mortality 
Rate 

Monthly Rainfalls, 
mother’s 
characteristics, 
child’s 
characteristics, 
religion, region, 
etc. 

Birth data in 
9 West 
African 
countries 

On average, rainfall and 
infant mortality are unrelated. 
But rainfall shocks have an 
adverse effect on the survival 
of young children who were 
born in the rainy season. 

Kudamast
su et al. 
(2012) 

Infant 
Mortality 
Rate by 
Area, by 
Household 
Type 

Monthly rainfalls, 
season, drought 
indicator, 
household type, 
area (endemic, 
epidemic, non-
malarious, rainy 
and arid) 

Birth data in 
28 African 
countries 

Increased rainfall is 
associated with higher 
mortality by malaria in 
epidemic areas, but not in 
endemic areas. 

Rocha and 
Soares 
(2015) 

Gestation, 
Birth 
Weight and 
Infant 
Mortality 
Rate 

Monthly rainfall, 
drought indicator, 
temperature, trend, 
etc. 

Birth data in 
Semiarid 
Northeast 
Brazil 

Negative rainfall fluctuations 
lead to higher incidences of 
low birth weight, preterm 
gestation and infant mortality 
rates, in particular due to 
intestinal infections and 
malnutrition. 

Skoufias 
et al. 
(2011) 

Child 
height-for-
age 

Rainfall, household 
and individual 
characteristics.  

Mexico 
Family Life 
Survey and 
National 
Nutrition 
Survey of 
Mexico 

The effects of rainfall on 
height-for-age is 
heterogeneous. A positive 
rainfall shock during the wet 
season is associated with 
shorter children in the North, 
but not in the Centre/South 
regions.  
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Table A3. Per capita Agricultural Production and Rainfalls 

 Agricultural Production per capita 
Precipitation -24.5 56.9 72.8 
(100 mm) (16.5) (49.6) (74.7) 
Precip. Sq.  -3.4 -4.6 
  (2.4) (3.6) 
Non-Ag Pop.   13.3 
(%)   (13.5) 
Illiteracy    27.9 
(%)   (18.9) 
Rooms   1,340.6*** 
   (475.7) 
Housing Area   -39.5 
   (26.7) 
GDP pc   69.5** 
(1000 Yuan)   (32.7) 
Gov. Exp. pc   -393.5** 
   (195.8) 
Hospital Beds   -17.1** 
(per 10,000)   (8.5) 
Observations 461 461 460 
R-squared 0.0 0.0 0.1 
Note.-The relationship between per capita agricultural production and precipitation is estimated 
by a set of ordinary least square (OLS)  regressions. Huber-White robust standard errors are 
reported in the parenthesis.  
*** Significant at 1% level. 
** Significant at 5% level. 
* Significant at 10% level. 
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Table A4. Water Quality and IVs: OLS Estimates 
  Water Quality Type  (Type I-VI) 
Precipitation -0.359***  -0.339*** -0.332*** 
(100 mm) (0.044)  (0.045) (0.051) 
Precip. Sq. 0.009***  0.008*** 0.008*** 
 (0.002)  (0.002) (0.002) 
Dumping  0.020 0.023 0.030* 
  (0.020) (0.015) (0.016) 
Dumping Sq.  -0.001** -0.001*** -0.001*** 
  (0.000) (0.000) (0.000) 
Non-Ag Pop.    0.008** 
(%)    (0.004) 
Illiteracy     0.017 
(%)    (0.017) 
Rooms    0.239* 
    (0.143) 
Housing Area    -0.012 

    (0.012) 
GDP pc    0.024** 
(1000 Yuan)    (0.011) 
Gov. Exp. pc    0.034 
    (0.092) 
Hospital Beds    -0.005* 

(per 10,000)    (0.003) 
F-stats 103.57 12.49 62.63 24.7 
Observations 461 461 461 460 
R-squared 0.261 0.028 0.289 0.310 
Note.-Huber-White robust standard errors are reported in the parenthesis.   
*** Significant at 1% level. 
** Significant at 5% level. 
* Significant at 10% level.  
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