A Model of China’s State Capitalism

Xi LI, Xuewen LIU, Yong WANG

HKUST IEMS Working Paper No. 2015-12
February 2015
Abstract

Despite consistently lower productivity, China’s state-owned enterprises (SOEs) exhibited higher profitability than non-SOEs after 2001 while the opposite was true in the 1990s, even with markets becoming increasingly liberalized and GDP growth remaining high throughout the whole period. To address this growth puzzle, we develop a general-equilibrium model based on the following under-appreciated vertical structure featured in China’s state capitalism: SOEs monopolize key upstream industries, whereas downstream industries are largely open to private competition. We show how the upstream SOEs extract rents from the liberalized downstream industries in the process of structural change and globalization. The unprecedented prosperity of SOEs is thus symptomatic of the incompleteness of market-oriented reforms, distorting factor prices, impeding structural change, depressing GDP, and reducing public welfare. We also explain how this vertical structure emerged endogenously, and why this development model of state capitalism is not sustainable. General implications for other countries are also discussed.

Author’s contact information

Xi Li
Department of Accounting
The Hong Kong University of Science and Technology
E: acli@ust.hk

Xuewen Liu
Department of Finance
The Hong Kong University of Science and Technology
E: xuewenliu@ust.hk

Yong Wang
Department of Economics
The Hong Kong University of Science and Technology
E: yongwang@ust.hk
T: +852 2358 7625
A MODEL OF CHINA’S STATE CAPITALISM*

Xi Li† Xuewen Liu‡ Yong Wang §

This version: November 2014

Abstract

Despite consistently lower productivity, China’s state-owned enterprises (SOEs) exhibited higher overall profitability than non-SOEs after around 2001 while the opposite was true in the 1990s, even though the markets became increasingly liberalized and GDP growth rates remained stably high throughout the whole period. To address this growth puzzle, we develop a general-equilibrium model based on the following under-appreciated vertical structure featured in China’s state capitalism: SOEs monopolize key upstream industries, whereas downstream industries are largely open to private competition. We show how the upstream SOEs extract rents from the liberalized downstream industries in the process of structural change and globalization. The unprecedented prosperity of SOEs is shown to be a symptom of the incompleteness of market-oriented gradual reforms, which distorts factor prices, impedes structural change, depresses GDP and reduces public welfare. We also explain how this vertical structure emerged endogenously and why this development model of state capitalism is not sustainable. General implications for other countries are also discussed.

Key Words: Structural Change; Growth and Development; State Capitalism; Chinese Economy; State-Owned Enterprises

JEL Classifications: E02, E60, F63, O10, O43, P31

*We thank the participants at the NBER Summer Institute Economic Growth Meeting (2013), SED (2013), Dallas Fed-SHUFIE International Economics Conference, China Economics Summer Institute, China Summer Institute of Finance, Shanghai Macro Conference, HKUST Conference on Governance and Development, IMF, US Department of State, US Department of Treasury, US International Trade Commission, as well as seminars at numerous universities for comments. For valuable discussions and comments, we are particularly grateful to Chong-En Bai, Chang-Tai Hsieh, Jennifer Huang, Chad Jones, Tim Kehoe, Joe Kaboski, Justin Yifu Lin, Rachel Ngai, Barry Naughton, Albert Park, Diego Restuccia, Gerard Roland, Michael Song, Jian Wang, Shang-Jin Wei, Laura Wu, Yang Yao, Alwyn Young, Yifan Zhang, Xiaodong Zhu, and Fabrizio Zilibotti. Yong Wang acknowledges the financial support from GRF (#644112). Lerong Li, Dara Panichakarn, Chenlai Shi, and Xiaotong Su provide able research assistance.

†Hong Kong University of Science and Technology. Email: aclli@ust.hk
‡Hong Kong University of Science and Technology. Email: xuewenliu@ust.hk
§Contact Author. Department of Economics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Email: yongwang@ust.hk. Fax: 852-23582084. Phone: 852-23587625.
1 Introduction

Major emerging economies all practice some form of state capitalism, usually referred to as the state controlling an important share of the economy while the private sector largely operates in the free market.\(^1\) A case in point is China. The market-oriented reforms to establish a “socialist market economy with Chinese characteristics” led to a rapid expansion of the private sector but state-owned enterprises (SOEs) remained an important part of the economy.\(^2\) SOEs have become the focus of recent research on China’s state capitalism and also a key element of most recent research on China’s economic growth (see, e.g., Che (2009), Pearson (2014), Song, Storesletten and Zilibotti (2011), Yao (2014), Zhu (2012)).

With the backdrop of the economic success of BRIC countries (especially China) contrasted with the recent deep recession in the developed world, some have touted state capitalism as a legitimate alternative growth model.\(^3\) From 2001 to 2011, China’s total GDP rose from the sixth in the world to the second, with an annual average growth rate of approximately 10%. Most strikingly, China’s SOEs on average seemed to outperform non-SOEs after around 2001. Figure 1 plots the profit margin (i.e., the ratio of profit to sales revenue, or Lerner Index) of SOEs versus non-SOEs between 1993 and 2008, together with exports as percentage of GDP.\(^4\)

[INSERT FIGURE 1 HERE]

The profitability of SOEs surpassed that of non-SOEs after around 2001 while the opposite was true in the 1990s, even though China recorded stable, high GDP growth rates during both decades (also see Bosworth and Collins (2008), Naughton (2005, 2007), Zhu (2012)). To provide further corroboration, Figures 2a and 2b present two alternative measures of profitability, namely, the total

\(^1\)The term “state capitalism” has various meanings, but it is usually characterized by the dominance or existence of a significant number of state-owned business enterprises (see, e.g., Binns (1986), Bremmer (2010)).

\(^2\)The data from National Bureau of Statistics (NBS) of China show that the SOEs still account for about 40% of total fixed investments (Naughton (2007)). Note that NBS changes the definition of state enterprises over time, some years reporting on state owned enterprises (SOEs) and other years reporting on state owned and holding enterprises (SOEs and SHEs). SOEs are wholly state-owned firms and SHEs are firms whose majority shares belong to the government or other SOEs. We call all these state enterprises SOEs and the remaining enterprises non-SOEs throughout the paper.

\(^3\)See, e.g., the special issue on “state capitalism” in the Economist of Jan 21st, 2012. However, Lardy (2014), among others, casts doubt on the success of China’s State Capitalism. Also see Malesky and London (2014).

\(^4\)Our primary measure of profitability is profit margin, equivalent to the Lerner Index (with constant-return-to-scale technologies), but the performance of SOEs and non-SOEs is also compared empirically in Section 2 based on many other alternative measures. How to correctly interpret some of these performance measures, e.g., return on fixed assets, can be quite subtle, in which case theoretical clarification is explicitly provided in Section 6.
profit of industrial enterprises, scaled by the number of enterprises and by employees, respectively. The figures confirm that the profitability of SOEs far outstripped that of non-SOEs in the last decade. In fact, almost all of the 57 Chinese firms on the list of the Fortune Global 500 in 2011 are SOEs. 5

[INSERT FIGURES 2a & 2b HERE]

This phenomenon may appear puzzling because it contradicts the common notion that enhanced competition due to market-oriented reforms, including trade liberalization, hurts less efficient firms (SOEs). 6 It also seems at odds with the conventional wisdom in the literature of economic growth and resource misallocation; that literature tells us that fast aggregate growth does not occur when a large scale of less productive firms (SOEs) persistently outperform more productive ones (private firms) (Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Jones (2013)). The main objective of our paper is to explain this puzzling fact by developing a theory of China’s state capitalism.

Our theory highlights a crucial feature of China’s state capitalism that emerged around a decade ago. SOEs have monopolized key upstream industries (such as energy) and also have continually consolidated this power through government-arranged mergers, whereas downstream industries (such as most manufacturing of consumption goods, accommodation and catering) have been liberalized and mostly open to private competition. In other words, the key upstream sectors are still largely controlled by the state, whereas the downstream industries operate under capitalism. This important “vertical structure” has received insufficient attention in the literature, and will be documented in detail in Section 2.

Our core argument is as follows: By 2001 or so, low-productivity SOEs had already exited from most of the liberalized downstream industries while the upstream industries were still monopolized by SOEs. When non-SOEs expanded due to productivity growth and factor accumulation in the competitive downstream industries, it led to higher demand for intermediate goods and services

5 Table A0 in the Appendix provides more detailed information about these 57 firms.
6 There exists abundant empirical evidence showing that productivities and investment efficiency of SOEs are lower than those of non-SOEs; see e.g., Sun and Tong (2003), Dollar and Wei (2007), Liu and Siu (2011), Zhu (2012), and Cao and Liu (2011). So it seems unlikely that the superior profitability of SOEs mainly results from higher TFPs of SOEs than non-SOEs. Empirically, it is challenging to accurately measure TFPs when monopoly exists. Note that TFP calculation in standard growth accounting assumes perfect competition. We propose an explanation without assuming TFP dominance of SOEs over non-SOEs.
monopolized by the SOEs in those upstream industries. Consequently, even without any productivity improvement, the upstream SOEs flourished more than the non-SOEs in the competitive downstream sectors. In addition, the enhanced trade liberalization (note that China joined the WTO in December 2001) created more external demand for the downstream tradeables (see Yu (2014) and Khandelwal, Schott and Wei (2014) for more empirical evidence on the importance of trade for China); it ultimately enabled upstream SOEs to extract even more rents in the process of globalization. This linkage between trade and vertical structure helps explain why SOEs’ profitability closely co-moved with the export-to-GDP ratio in Figure 1, even though SOEs’ share in total (direct) export was small (it decreased from 70.20% in 1994 all the way down to 18.00% in 2008; see Table A3 in the Appendix).

Although the rent-extraction mechanism within the vertical structure works for autarky and also works for economies with small populations, trade openness and labor abundance both play important augmenting roles. Without the enlarged external demand due to international trade, downstream non-SOEs would not expand as much, and hence upstream SOEs would not be able to make such outsized profits (see Proposition 4). Without abundant labor, the upstream SOEs would not be able to maintain persistently high profitability because wages would rise more rapidly, which would not only depress the induced demand for upstream intermediate inputs but also limit the room for the monopoly markup charged by upstream SOEs due to international competition in downstream industries. Our model highlights how the rent extraction of upstream SOEs interacts with trade globalization and structural change (industrialization) simultaneously (see Ngai and Pissarides (2007), Restuccia, Yang, and Zhu (2008), Uy, Yi and Zhang (2013)).

Although this paper focuses mainly on the 2001-2008 period, our framework also explains why the fortune of SOEs was the opposite during the 1992-2001 period. The initial deregulation reform and trade liberalization in downstream industries in the 1990s led to the entry and expansion of high-productivity non-SOEs. As a result, low-productivity SOEs suffered severe losses and gradually exited from downstream industries (see Lin et al. (1998), Naughton (2005, 2007), Xu (2011), Yao (2014)). During this period, non-SOEs outperformed SOEs as a whole until unprofitable SOEs largely exited from competitive downstream industries, as seen in Figure 1. However, as the vertical structure came into full shape, the remaining SOEs, which mainly stayed in the upstream industries, started to outperform non-SOEs as they benefitted disproportionately from the expansion of downstream private industries. SOEs as a whole were no longer victims but rather beneficiaries of
the market-oriented reform and trade liberalization, even though their productivity was still lower than that of non-SOEs. Such a reversal of fortune for SOEs crucially depends on the emergence of the vertical structure. If it were a horizontal structure, that is, SOEs and non-SOEs always competing in the same or horizontally substituting industries, then it can be mathematically shown that SOEs would get hurt when non-SOEs improved their productivity.

To formalize this idea, our general-equilibrium benchmark model studies two cases: autarky and free trade. The autarky case highlights the mechanism through which SOEs in the upstream industry extract monopoly rents from the non-SOEs in the competitive downstream industries during the process of structural change. We analytically characterize the profits of the upstream SOEs, aggregate GDP, and their explicit connections to structural change. We demonstrate how an increase in the productivity of downstream non-SOEs would benefit upstream SOEs through the vertical structure and how labor abundance helps upstream SOEs during industrialization. We also show that elimination of the upstream SOE monopoly would lead to more industrialization, larger GDP, and greater social welfare. In other words, the vertical structure (upstream SOE monopoly and downstream liberalization) creates distortions and welfare loss, which supports the general view that there are pitfalls of partial reforms or incremental reforms (Bruno (1972), Murphy, Shleifer and Vishny (1992) and Young (2000)). In the open-economy case, we consider free trade between two large countries. The key new mechanism we highlight is how international trade enables the upstream SOE’s extraction of even more rents from the downstream non-SOEs, which expand via international trade thanks to comparative advantage in cheaper labor.

We extend the benchmark model to discuss the emergence (past) and sustainability (future) of China’s model of state capitalism. On emergence, we show how the vertical structure can be rationalized as an equilibrium outcome of SOEs’ maximizing aggregate profit. On sustainability, we show that, if domestic wages rise endogenously to a high enough level with industrialization, China’s downstream private industries will be strangled by the upstream SOE monopoly and lose international competitiveness if upstream SOEs fail to lower markups and improve productivity.

Related literature To the best of our knowledge, this paper is the first to document and theoretically model the vertical structure underlying China’s state capitalism. It contributes to several strands of literature in growth, macro development and institutional reforms.

First, our paper sheds new light on structural change by introducing the vertical structure into the non-agriculture sector. We show how upstream monopolist firms benefit from structural change
(industrialization), but at the same time impede industrialization. Our approach complements existing approaches, which typically treat the industrial (or modern) sector either as a single industry or a sector with multiple horizontally differentiated industries in an closed economy (see Acemoglu and Guerriero (2008), Caselli and Coleman (2001), Kongsamut, Rebelo and Xie (2001), Ngai and Pissarides (2007), Restuccia, Yang, and Zhu (2008), Buera and Kaboski (2012)). The vertical structure is also critical in explaining how international trade (including export-promoting policies) not only facilitates industrialization but also disproportionately benefits the upstream nontradable sector, which differs from open-economy models featuring a horizontal structure (Matsuyama (2009) and Uy, Yi and Zhang (2013)). However, if labor costs rise sufficiently with structural change, trade globalization would amplify the strangling effect of the upstream monopoly on structural change and total GDP. In other words, trade openness is a double-edge sword for upstream (inefficient) SOEs, depending on domestic labor cost and productivity.

Second, our paper contributes to the growth literature about resource misallocation. Whereas the existing literature emphasizes how low aggregate TFP can result from factor misallocation across horizontally differentiated firms or sub-industries (Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Brandt, Van Biesebroeck and Zhang (2012)), we emphasize the vertical structure mechanism, that is, how productivity increases in downstream firms benefit rather than hurt low-productivity upstream firms (SOEs). The vertical structure also explains how low-productivity firms may benefit from economic deregulation and trade liberalization, different from the predictions of horizontal-structure models. Moreover, we highlight a different source of distortion. The existing literature largely focuses on factor market distortions, especially capital allocation inefficiency (Dollar and Wei (2007), Song, Storesletten and Zilibotti (2011), Hsieh and Song (2013), Brandt, Tombe and Zhu (2013)); our paper complements that literature by highlighting the monopoly distortions in product markets, which through general equilibrium effects also indirectly distort the factor prices and allocations even when the factor markets themselves are perfect (also see Wang (2014a)). Parente and Prescott (1999) study how monopoly in the output market hampers adoption of better technology, but there is no vertical structure.

Third, our model contributes to the literature on economic transition and institutional reforms, especially in China (see Naughton (2005, 2007), Che (2009), Roland (2000), Xu (2011)). While

7 Jones (2013) investigates how the effect of horizontal resource misallocation is amplified through intermediate inputs.
Lau, Qian and Roland (2000) emphasize how the gradual dual-track reform in China is successful as a Pareto-improving process, Murphy, Shleifer and Vishny (1992) and Young (2000) emphasize the economic distortions created by this gradualism (see also Bruno (1972) and Bai et al. (2004)). We present a new aspect of the incompleteness of gradualism in China’s market-oriented reforms: the downstream (typically tradable) industry is liberalized, whereas the upstream (non-tradable or trade-regulated) industry remains monopolized by SOEs. We emphasize that the unprecedented prosperity of SOEs is not evidence of SOE superiority but rather is an undesirable symptom of gradualism and incompleteness of reform. It is the downstream liberalized industries, which are expanding along with industrialization and globalization, that are the true driving force for China’s economic growth.\(^8\)

Fourth, our paper sheds new light on the literature on China’s SOE reform in the context of growth and development. The early literature mostly focused on how the governance structure and productivity of SOEs improved and how SOEs gradually exited (from the downstream sectors) in the 1990s (Groves, Hong, McMillan, and Naughton (1994), Li (1997), Lin et al. (1998), Naughton (2005, 2007), Yao (2014)). In contrast, we emphasize how SOE profitability increased over the past decade during the process of structural change and globalization. In this regard, our paper is closely related to Song, Storesletten and Zilibotti (2011), who show how the profitability of the monopolist SOEs in capital-intensive sectors increased as SOEs retreated from the competitive and labor-intensive sectors within a horizontal structure with financial frictions. Our paper differs from, and complements, theirs in several important aspects. First, in our model, SOE profitability increases mainly because of rent extraction through the vertical structure, independent of financial market frictions or the difference in capital intensities between SOEs and non-SOEs. Second, we show that structural change and trade globalization both play important roles in accounting for the profitability of SOEs and non-SOEs at each stage of this development model of state capitalism: past (emergence), present and future (sustainability), whereas Song et al. focus on the manufacturing sector without rural-urban migration or trade specialization.\(^9\) Finally, the main objectives of the two papers are different. We aim to explain why the profitability of SOEs was reversed relative to that of non-SOEs in the past two decades, and also explore the efficiency and

\(^8\) Allen, Qian and Qian (2005) find that the private sector in China grew much faster than other sectors and contributed to most of the economy’s growth. For more analyses on China’s economic growth, see Yao (2014), Young (2003) and Zhu (2012), among others.

\(^9\) For quantitative importance of structural change for China’s growth, refer to Zhu (2012), Dekle and Vandenbroucke (2012), and Cao and Birchenall (2013).
sustainability of this model of state capitalism, whereas the primary focus of Song et al. (2011) is to resolve the puzzle why China had high output growth, sustained returns on capital and a large foreign surplus simultaneously.\(^{10}\)

The paper is structured as follows. Section 2 documents the institutional background of SOE reforms, highlights the key feature of the vertical structure of China’s state capitalism, and presents preliminary motivating empirical evidence. Section 3 presents the benchmark model. Section 4 and Section 5 study the emergence and sustainability of China’s state capitalism, respectively. Section 6 discusses several related issues. Section 7 focuses on the model’s general implications for other countries. The last section concludes.

2 Background, Facts, and Empirical Motivations

This section first briefly documents the relevant history of China’s SOE reforms in the past three decades and highlights the institutional background of how the vertical structure of China’s state capitalism came into existence. It then documents detailed quantitative facts about this vertical structure, followed by more empirical evidence showing the relevance of the vertical structure in explaining the performance of SOEs.

2.1 A Brief History of China’s SOE Reforms

After China’s historical decision on so-called “reform and opening up” in 1978, the central government adopted a gradual, experimental, and pragmatic approach of “crossing the river by touching stones” to reforming SOEs. The central government has tried to improve SOE performance while maintaining state ownership and control over a large swath of the economy (Lin (2009), Naughton (2005, 2007) and Xu (2011)).

Until 1978, virtually all firms were SOEs or collectively-owned in both upstream and downstream industries. During the 1980s, the first stage of SOE reforms started, focusing on increasing enterprise autonomy through a system that required managers to meet performance targets in return for retained profit. This system initially improved SOEs’ performance (Groves et al. (1994), Li (1997)). However, it quickly ran into trouble because managers were rewarded for success but

\(^{10}\)For growth models that have multiple industries with different capital intensities, monopolistic market structures, Marshallian externalities, and dynamic trade policies, see Ju, Lin, and Wang (2011, 2013) and Wang (2014a, 2014b), among others.
not punished for failure and were able to exploit their effective control over SOE assets. Although other types of contracts were tried, SOEs accumulated huge losses, especially because of the increasing competition from non-SOEs, which were mainly foreign-invested enterprises and township and village enterprises (Qian (1996) and Naughton (2007)). During the 1978-1993 period, the share of SOEs’ net industrial output decreased from more than 80% to about 58.7%, even though this period witnessed virtually no closing of any SOEs. The financial loss and leverage of SOEs rose steadily whereas the economic significance of SOEs persistently declined. About 30.9% of SOEs were loss-makers in 1994 and their debt to equity ratio reached 211% (see Table A4).

The second stage of SOE reforms began after the historical Southern tour of Deng Xiaoping in 1992. At the 14th Chinese Communist Party Congress in 1992 and the Third Plenum in 1993, the central government endorsed creation of a “socialist market economy” based on public ownership as its reform goal. At the 15th Party Congress in 1997 SOEs were downgraded to a “pillar of the economy”, and the legal status of private ownership was formally endorsed by the new constitution in 1999. The state launched a so-called “three-year battle” to restructure SOEs between 1998 and 2000.

Privatization of SOEs and layoffs of workers began on a large scale in 1995, when the central government formally set the policy of “nurturing the large and letting the small go” (zhuada fangxiao). The central government explicitly pursued the strategy of retaining state control of 500 to 1,000 large SOEs in strategic sectors, where competition was severely restricted through administrative regulation, and meanwhile closing or privatizing small and medium-sized SOEs, which were typically located in downstream industries such as footwear and apparel (see, e.g., Green and Liu (2005), Naughton (2007), World Bank (2012)). By the end of 1997, the 500 largest SOEs accounted for 37% of state industrial assets, 46% of all tax revenues from SOEs, and 63% of SOE profits. In comparison, small SOEs, generally controlled by local governments, performed poorly, especially after extensive entry of non-SOEs into the liberalized industries. For example, 72.5% of local SOEs were unprofitable, whereas 24.3% of central SOEs were unprofitable in 1995 (see Szamosszegi and Kyle (2011) and World Bank (2012)).

The 10th Five-Year Plan for National Economic and Social Development (for the 2001-2005 period) called for the government to “hold a controlling stake in strategic enterprises that concern the national economy” and also to “uphold the dominance of the public sector of the economy [and] let the state-owned sector play the leading role.” In 2006, the State-Owned Assets Supervision and Administration Commission (SASAC hereafter) designated defense, electric power and grid, petroleum and petrochemical, telecommunications, coal, civil aviation, and shipping to be strategic industries.
Throughout and after this round of SOE reform, central SOEs consolidated their monopoly position in upstream industries and reinforced their advantageous position even further through reorganizations such as mergers and groupings of enterprises within the same industry. Since the upstream industries are generally in non-tradable or regulated sectors, central SOEs were still shielded from competition after the WTO entry. By contrast, non-SOEs faced fierce competition in the largely liberalized downstream industries, which are typically tradeable and open to foreign direct investment. Overall, the monopoly position of SOEs in upstream industries was protected and strengthened while the downstream industries became more competitive.12

2.2 Stylized Facts

This subsection first documents the quantitative facts on profitability of SOEs versus non-SOEs since 1993. It then provides detailed evidence on the development of the vertical structure of China’s state capitalism over the last two decades.

Figure 3 divides the industrial sector into two groups based on profit margin and compares the SOE shares in these two groups from 1995 to 2009.13 The left panel shows that SOEs’ presence in the high-profit-margin group is always significantly higher than their presence in the other group, although both decline over time. The right panel shows that, relative to 1995, SOEs’ presence declined more dramatically in the low-profit-margin group. This unbalanced compositional shift indicates that sectoral asymmetry is an important aspect of the relative performance of SOEs versus non-SOEs illustrated in Figure 1 and Figure 2.

[INSERT FIGURE 3 HERE]

To further explore the distribution of SOEs and non-SOEs in different sectors, we divide the industries into upstream and downstream industries based on upstreamness scores, which are calculated from China’s input-output tables for four different years (1995, 1997, 2002, 2007) following

12For example, Dean et al. (2010) report that by 2008, total assets of SOEs in China were $6 trillion, or 133\% of Chinese GDP, whereas the corresponding numbers for France, a developed country known for its outsized state control in the economy, were $686 billion and 28\%, respectively. In particular, there are fewer than 200 SOEs directly under the SASAC supervision, but their assets account for 62\% of GDP.

13Although we are aware that some upstream state sectors may not have outsized profitability for some years during our sample period, overall those sectors are few and those years are limited. Our focus is on explaining the macroeconomic phenomena of much higher profitability of SOEs during the 2002-2007 period while SOEs are much less profitable in the 1990s.
Antras et al. (2012). The upstream (downstream) industries are those in the upper (bottom) ter-
tile of the upstreamness scores. Although upstreamness scores vary slightly in different years, the
classifications of upstream and downstream industries remain relatively consistent across years.14

Figure 4 decomposes Figure 1 into upstream and downstream industries, showing that, conditional
on ownership type, upstream firms enjoyed a greater profitability than downstream firms. In par-
ticular, the profitability of upstream SOEs increased faster than that of downstream non-SOEs.
When measured by profit per enterprise or profit-to-employee ratio, a similar pattern holds: up-
stream SOEs not only outperformed downstream SOEs but also outperformed both upstream and
downstream non-SOEs.15

\[\text{INSERT FIGURE 4 HERE}\]

The next few figures document the under-appreciated feature of China’s state capitalism: up-
stream industries are dominated by SOEs whereas downstream industries are largely liberalized
and dominated by non-SOEs.

\[\text{INSERT FIGURE 5 HERE}\]

Figure 5 compares the shares of SOEs in upstream and downstream industries within the in-
dustrial sector. Panel 5a plots the value-added share of SOEs in upstream versus downstream
industries from 1995 to 2007. It shows that SOEs consistently dominated the upstream industries,
whereas their presence in downstream industries was not only low but also decreased more dramat-
ically in percentage terms (Panel 5b). Panels 5c-5e display the differences between upstream and
downstream industries in various dimensions. Comparing Panel 5c and Panel 5d, we see that SOEs
exited from downstream industries but continued to dominate non-SOEs in upstream industries,
except for the number of firms. Note that the aggregate profit of downstream SOEs was negative in
1998 and became positive in 2007, echoing Figure 3. Panel 5e shows averages over time, indicating
that SOEs accounted for the majority shares of revenues, profits, fixed assets, and total assets in
upstream industries, whereas the opposite was true for downstream industries. From the distribu-
tions of firm numbers and employment across upstream and downstream industries, we can infer

14Table A1 in the Appendix provides the upstreamness indexes for each industry and how upstream and downstream
industries are classified accordingly.

15Figure A1 in the Appendix decomposes Figure 2 into upstream and downstream. Observe that the return on
fixed assets is lower for SOEs than non-SOEs, but it is not necessarily direct evidence for low profitability due to
higher capital intensity in the presence of market power. See Section 6 and the Appendix for more discussions.
that upstream SOEs on average are much larger and more profitable than non-SOEs in the same industries or SOEs in downstream industries.

The same industrial enterprise database also shows that the average revenue-based Herfindahl-Hirschman Indices (HHI) across the upstream industries have been more than twice as large as that of downstream industries during the past decade, suggesting a less competitive market structure in the upstream industries.\footnote{The Lerner Index is also much higher in the upstream industries than that in the downstream industries. For further extensive evidence of SOE monopolies (in upstream industries), see World Bank (2012). The existence of administrative monopoly in the “strategic industries” is also officially acknowledged by the Central Committee of the Communist Party of China (see People’s Daily, Nov. 16, 2013).} Another important difference is that upstream output almost exclusively serves the domestic market, whereas the downstream industries are much more export-oriented. For example, within the industrial (tradable) sector, the export-to-output ratio is 21.9% in the downstream industries versus 5.5% in the upstream industries. The upstream-downstream difference in export exposure is presumably even more striking for the whole economy after non-tradable service sectors are also included. Further, even for some tradable upstream inputs or services, downstream private firms still must purchase from domestic upstream SOEs rather than importing directly, due to government regulations.\footnote{Strictly speaking, the industrial enterprise database is not exactly a firm-level database, and it has no information about the firm affiliation of individual enterprises. A large firm like Sinopec, China Telecom, or Bank of China is composed of thousands, or even tens of thousands of enterprises in the database, so the database is ill-suited for accurate investigations on market structures. Thus, the HHI estimate should be read with caution because it is likely to substantially underestimate the extent of industry concentration.} Refer to Table A1 for more detailed evidence for the facts discussed in this paragraph.

The above facts are all for the industrial sector. The same features remain true at the national level, although data availability, especially time series data for various performance measures, is much more limited.\footnote{Petroleum is a case in point. China is a net importer of raw petroleum. However, virtually no downstream private firms are allowed to directly import oils from abroad; instead, they have to purchase oil or related products from domestic upstream SOEs such as Sinopec Group and China National Petroleum.}

\[\text{INSERT FIGURE 6 HERE}\]

Figure 6a shows that in all urban sectors SOEs’ share in upstream sectors far exceeded their share in downstream sectors in terms of domestic fixed asset investment from 2004 to 2009.\footnote{Table A2 provides the streamness scores for all the sectors based on China’s IO table. The classification into upstream and downstream sectors by tertiles is therefore different from that for the industrial sector alone (Table A1). Note that firm-level data are not available for non-industry sectors in 2007, so we use the IO table in 2008 to compute the streamness scores required by Figure 6, which is for all sectors.} Figure 16\footnote{The data for value added are unavailable for urban sectors.}
6b shows that SOEs dominated non-SOEs in the upstream sectors in various dimensions, but the opposite was true in downstream sectors. The exceptions are firm numbers and total employment, but they imply that the dominance of SOEs over non-SOEs is even more pronounced in terms of average performance per firm (or per employee) or in terms of average firm size.

Table 1 shows that the salient feature of the vertical structure remains valid for the largest firms. The 57 Chinese firms on the list of the Fortune Global 500 in 2011 are highly skewed toward state ownership and are also highly concentrated in upstream industries such as oil and power generation. This pattern is truly exceptional from a global perspective, especially when compared with countries with “liberal capitalism” such as the US and France. Note that, among all the developed economies, France is widely regarded as having an unusually high presence of SOEs.

[INSERT TABLE 1 HERE]

2.3 Motivations for the Vertical Structure Mechanism

The purpose of this subsection is to provide more motivating evidence for the empirical relevance of the vertical structure in explaining the extraordinary performance of SOEs. As briefly noted in the introduction, the key novel mechanism to be formalized in this paper is that the monopolist SOEs in the upstream industries are able to extract more rents from the downstream non-SOEs, or loosely speaking, privately-owned enterprises (POEs), when the latter expand due to productivity increase and/or better accessibility to the world market in the process of structural change and trade globalization.

To this end, we use the Chinese industrial enterprise data provided by NBS (1998-2007) and run the following regression with the sample of individual upstream SOEs:

\[
y_{i,j,t} = \beta_0 + \beta_1 \cdot UpSoeTFP_{j,t} + \beta_2 \cdot UpPoeTFP_{j,t} + \beta_3 \cdot DownSoeTFP_{j,t} + \beta_4 \cdot DownPoeTFP_{j,t} \\
+ \beta_5 \cdot Total_Assets_{i,t} + \beta_6 \cdot DownExportShare_{j,t} + \beta_7 \cdot HHI_{j,t} + \beta_8 \cdot TFP_{i,t} \\
+ \beta_9 \cdot Capital_Intensity_{j,t} + Firm_i + Year_t + \epsilon_{i,j,t},
\]

where the dependent variable \(y_{i,j,t} \) is one of the following six performance measures of SOE \(i \) in (upstream) industry \(j \) at year \(t \): profit (344), revenue (325), ROFA (return on fixed assets, measured by profits divided by fixed assets (309)), fixed asset turnover (revenue divided by fixed
assets), profit margin (profit divided by revenue), and profit-to-employee ratio (344/210). The numbers in parentheses are the corresponding codes in the NBS data set. We control for year and firm fixed effects in the regression.

Given that downstream industries are dominated by POEs, we are mainly interested in how the performance of an SOE \(i\) in upstream industry \(j\) at year \(t\) is affected by the corresponding weighted average TFP of downstream POEs \((\text{DownPoeTPF}_{j,t})\), which is measured using the follow formula:

\[
\text{DownPoeTPF}_{j,t} = \sum_{k \in \text{downstream}} \eta_{j,k,t} \cdot \text{PoeTPF}_{k,t},
\]

where \(\text{PoeTPF}_{k,t}\) is the median TFP of the POEs in downstream industry \(k\) in year \(t\) and \(\eta_{j,k,t}\) is the output share of upstream industry \(j\) that are inputs for downstream industry \(k\) in year \(t\). Obviously, for different upstream industries, the composition of the corresponding downstream industries are different. We present the results when TFP is measured using the Olley-Pakes method, though the results based on the Levinsohn-Petrin method are very similar. If the vertical structure argument is empirically relevant, we should expect \(\beta_4\) to be positive and significant.

For the purpose of comparison, we also include the corresponding weighted average TFPs of three other groups of enterprises: upstream SOEs, upstream POEs and downstream SOEs, respectively. They are constructed using the same approach as for \(\text{DownPoeTPF}_{j,t}\). In addition, we control for two different but potentially complementary mechanisms. Mechanism A is that SOEs achieved faster productivity growth than POEs during 1998-2007 (see Cao and Liu (2011) and Hsieh and Song (2013)), which may partly explain why SOEs outperformed non-SOEs in the last decade. So we control for the TFP of that particular upstream SOE \(i\) \((\text{TPF}_{i,t})\). Mechanism B is that the extraordinary profitability of SOEs in the last decade (before the global financial crisis in 2008) is mainly due to their increasing concentration in capital-intensive industries that are financially subsidized (see Song et al.(2011)). This is related to the fact that SOEs have better access to cheaper loans than POEs as the major commercial banks in China are all state-owned (Dollar and Wei (2007) and Bai et al. (2006)). We thus control for the capital intensity of industry \(j\) measured by total fixed assets divided by total employment \((\text{Capital}_\text{-Intensity}_{j,t})\). Unfortunately, there is no precise measure for the total size of implicit subsidies received by each SOE, so we use the

\[21\] Replacing total assets by fixed assets, which may also control for capital intensity, does not affect our results, and the coefficient estimates of fixed assets are generally positive and significant. Because we include firm and year fixed effects, we have controlled for the industry-level fixed capital intensity measure used in Song et al. (2011).
logarithm of the total assets of SOE i ($\text{Total}_{ Assets_{i,t}}$) as a proxy, because it seems reasonable to assume that more subsidies are positively associated with larger total assets after controlling for the industry’s capital intensity and enterprise productivity. Another independent variable is the export-output ratio ($\text{exports (213)/sales (209)}$) for the industries that are downstream of industry j ($\text{DownExportShare}_{j,t}$), capturing the additional effect of the relative external demand for downstream output on upstream SOE performance. This is to explore the empirical relevance of the accessibility to the world market for the vertical-structure mechanism. For more empirical evidence on the importance of trade liberalization for China’s domestic productivity, growth, and reforms, see Lin (2009), Yu (2014), Khandelwal, Schott and Wei (2014) and Yao (2014). We also control for the market structure of industry j measured by the revenue-based Herfindahl-Hirschman Index ($\text{HHI}_{j,t}$). $\varepsilon_{i,j,t}$ is the error term. To mitigate the influence of outliers while preserving the underlying relations, we perform quantile regressions.

The following table presents the regression results.

Insert Table 2 Here

Most importantly, we can see that β_4 is always positive and significant in all six regressions, which is consistent with the vertical-structure mechanism. That is, an increase in the downstream POE productivity increases the demand for the output of upstream SOEs and hence boosts their profitability. We view this as strong supporting evidence for the vertical-structure mechanism, which will be formalized and examined thoroughly in the rest of the paper.\footnote{This key result also remains robust when the dependent variables are at the industry level instead of the enterprise level. However, for industry-level regressions, the sample size becomes much smaller, TFPs across industries are not comparable, and mechanism B is more difficult to control, so we mainly report the enterprise-level regression results, which should be more reliable.}

In contrast, β_2 is always negative and significant, consistent with the standard prediction under the horizontal structure (see Retsuccia and Rogerson (2008), Hsieh and Klenow (2009), Song et al.(2011)). That is, an increase in an upstream POE productivity reduces the demand for the output of SOEs in the same (upstream) industries and hence hurts their profitability. Thus, the empirical results confirm our theoretical predictions that the vertical and horizontal structures have diametrically opposite implications (see Appendix 1 and Proposition 2 for mathematical proofs).\footnote{Observe that β_1 is always insignificant, which may suggest that upstream SOEs are not exactly competing with each other, perhaps due to internal coordination by the government. Similar comments may also apply for β_3. However, this paper will mainly focus on the interaction between SOEs and non-SOEs rather than the interaction}
In addition, β_6 is positive and significant at the 5% level for columns (1) and (5) and significant at the 10% level for columns (2) and (6). These results are supportive of the vertical-structure mechanism because they show that holding the downstream productivity fixed, an increase in relative external demand for downstream output can promote upstream SOEs’ performance.

For the aforementioned two alternative mechanisms, β_8 is always positive and significant, consistent with mechanism A. Whereas β_5 is positive and significant, consistent with mechanism B, β_9 is negative instead of positive as implied by mechanism B, perhaps due to the lack of perfect measure of capital intensity.\(^{24}\)

In summary, the regression results indicate that the vertical-structure mechanism is empirically relevant and robust even after controlling for the other two possible mechanisms. Our study of the vertical structure provides a fresh perspective on how to understand, among other things, the differential performance of firms in different sectors in the context of structural change and trade liberalization.

\(^{24}\)It is important to recognize that mechanisms A and B and the vertical-structure mechanism are all logically complementary, not opposite, to one another. On the one hand, mechanism A needs the vertical-structure mechanism as it alone cannot explain why the profitability of SOEs exceeds that of POEs even though the productivity level of SOEs is still substantially lower than that of POEs (Zhu (2012), Cao and Liu (2011) and Song and Hsieh (2013)). On the other hand, there are at least four reasons why mechanism B cannot be the only explanation. First, it cannot explain why such good performance of SOEs was not observed in China in earlier periods, especially given that both the scope and magnitude of subsidies and monopoly power for SOEs in capital-intensive industries were much bigger in the 1980s or earlier, due to the heavy-industry-oriented development strategies (see Lin, Cai and Li (1998), Lin (2009)). Second, SOEs paid much higher effective tax rates than non-SOEs, and it remains unclear whether the net subsidies enjoyed by SOEs were significantly larger than non-SOEs in the past decade. Column (2) of Table A5 in the Appendix shows that share of total taxes paid by industrial SOEs is about 50%, whereas columns (3) and (4) show that their share of the value added and profits is below 34% and 27%, respectively. If government provides more subsidies to SOEs than to non-SOEs, those subsidies are unlikely in the form of lower taxes. Direct subsidies to SOEs, as shown in column (8), are decreasing over time and are negligible both in absolute magnitude and as a percentage of GDP, SOE value-added, or SOE gross profits. In fact, Guo et al. (2014) provide evidence showing that a non-negligible proportion of private firms have received government favors because their entrepreneurs are politically connected. Third, given the relatively low productivity of SOEs and the fact that SOEs still account for 48% of China’s total domestically funded fixed investment and 40% of total employment in urban areas in 2009 (Szamosszegi and Kyle (2011)), the persistently outstanding performance of SOEs in the 2001-2007 period must have required an even more substantial amount of government subsidies and created huge resource misallocations, especially because SOEs had to face even more fierce international competition after China joined the WTO in 2001. But this would be puzzling given that the whole economy still grew so fast and, in fact, even faster during the 2001-2007 period than before? Fourth, the causality between high profitability and preferential accessibility to favorable loans is ambiguous. Financial markets (with frictions) would rationally favor SOEs over non-SOEs if the former are more profitable due to monopoly rents in the first place (in the spirit of Kiyotaki and Moore (1997) and Bernanke and Gertler (1989)).
3 Benchmark Model

In this section, we develop a simple two-sector general equilibrium model with structural change. We first study the case of autarky, which features the vertical structure in China’s state capitalism. Then we extend it to an open economy to examine the role of international trade.

3.1 Autarky

3.1.1 Model Environment

Consider a closed economy \(H \), which is populated by a continuum of agents with measure equal to unity. Agents are divided into two groups: an elite class with measure equal to \(\theta \in (0, 1) \) and the grassroots with measure \(1 - \theta \). Agents are identical within each group. The economy has two sectors: an agricultural sector producing the numeraire good \(n \) and an industrial sector. Within the industrial sector, there is a vertical structure with the upstream industry producing intermediate good \(m \) and the downstream industry producing a composite consumption good \(d \).

Preference All the agents have the same utility function

\[
u(c_n, c_d) = c_n + \frac{\epsilon}{\epsilon - 1} c_d^{\frac{\epsilon - 1}{\epsilon}}, \quad \epsilon > 1,\]

where \(c_n \) and \(c_d \) denote consumption of good \(n \) and good \(d \), respectively. \(\epsilon \) is the price elasticity of demand for good \(d \). Both \(c_n \) and \(c_d \) must be non-negative.

Technologies All the technologies are constant returns to scale.\(^{25}\) One unit of labor produces \(A_n \) units of good \(n \). To produce good \(d \) requires capital \(k \), labor \(l \), and intermediate good \(m \). The production function is:

\[
F_d(k, l, m) = A k^\alpha l^\beta m^{1-\alpha-\beta},
\]

where \(\alpha \geq 0, \beta > 0, \alpha + \beta < 1 \).

The intermediate good \(m \) is produced with the following technology:

\[
F_m(k, l) = A_m k^\gamma l^{1-\gamma},
\]

where \(\gamma \in [0, 1) \).

\(^{25}\)Deviations from this assumption will be briefly discussed in Subsection 6.3.
Endowment and Market Structure Each agent, elite or grassroots, is endowed with L units of time (labor) and K units of capital. The intermediate good m is produced by a monopolist firm, which is owned by the “state” but fully controlled by the elite class as if the elite class owns it. Good n and good d are produced by competitive private firms, which are owned by the grassroots.\(^{26}\) Only the intermediate goods market is a monopoly, whereas all other markets (goods markets and factor markets) are perfectly competitive with free entry.

Vertical Structure The firm that produces the intermediate good is in the upstream industry, whereas all the firms producing good d are in the downstream industry. So good d is also referred as the “downstream good”. From the ownership point of view, the upstream firm is an SOE while all the downstream firms are POEs. This feature of ownership distribution (upstream SOE monopoly plus downstream capitalism) is referred to as the “vertical structure”. As documented in Section 2, the downstream industries in China have been dominated by competitive private firms since the massive privatization of SOEs in the late 1990s. However, SOEs still monopolize key upstream industries.

3.1.2 Characterizing Equilibrium

Let W and R denote the wage and the rental price of capital, respectively. Let p_n, p_d, and p_m denote the prices of good n, downstream good d, and intermediate good m, respectively.\(^{27}\)

Consumer Problem Let I_g and I_e denote the total income of a representative agent in the grassroots and in the elite class, respectively. Clearly, $I_g = WL + RK$ and $I_e = I_g + \Pi_m / d$, where Π_m is the total profit of the SOE. An agent with income I maximizes the utility function (1) subject to the budget constraint $p_n c_n + p_d c_d \leq I$, where $I \in \{I_e, I_g\}$. When I is sufficiently large (to be explained more precisely shortly), the aggregate demand is as follows:

\[
D_n = \left(\frac{WL + RK + \Pi_m}{p_n} \right) - \left(\frac{p_n}{p_d} \right)^{\epsilon-1}; \quad (4)
\]

\[
D_d = \left(\frac{p_n}{p_d} \right)^{\epsilon}. \quad (5)
\]

\(^{26}\)Later, the composite good d will be decomposed into a continuum of differentiated goods in Section 4, in which we discuss the liberalization process in the downstream industries, and in Section 6, where downstream private firms are engaged in monopolistic competition so that private firms also earn positive profits.

\(^{27}\)We keep p_n explicitly in the formula without substituting unity for it because this numeraire good may not be produced in rare cases, in which p_n can be indeterminate; thus it is inappropriate to call this good n numeraire good. However, for most cases, it causes no problem to replace p_n with one. Wage may conceptually serve as a better numeraire but it would tremendously complicate the computation and analysis.
Firm Decisions Perfect competition with free entry in the downstream sector implies that the price equals the marginal cost:

\[p_d = \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{A\alpha\beta (1 - \alpha - \beta)^{1-\alpha-\beta}}. \tag{6} \]

Using Shephard’s Lemma, we obtain the aggregate demand for \(m \) from (5) and (6):

\[D_m = (1 - \alpha - \beta) \cdot p_n \cdot \left[\frac{R^\alpha W^\beta}{A\alpha\beta (1 - \alpha - \beta)^{1-\alpha-\beta}} \right]^{1-\epsilon} \cdot p_m^{(1-\alpha-\beta)(1-\epsilon)-1}. \tag{7} \]

The upstream monopolist SOE, which produces good \(m \), maximizes its profit:

\[\Pi_m = \max_{p_m} D_m \cdot \left[p_m - \frac{R^\gamma W^{1-\gamma}}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}} \right], \tag{8} \]

which implies that

\[p_m = \mu \frac{R^\gamma W^{1-\gamma}}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}}, \tag{9} \]

where \(\mu \) is the endogenous markup given by

\[\mu = \frac{(1 - \alpha - \beta)(\epsilon - 1) + 1}{(1 - \alpha - \beta)(\epsilon - 1)}. \tag{10} \]

Clearly, \(\mu > 1 \). Intuitively, \(\mu \) is determined by the cost share of the intermediate good in the production of the downstream good \(d \) (i.e., the term \((1 - \alpha - \beta)\)) and the price elasticity of demand for good \(d \) (reflected by the term \(\epsilon - 1 \)).\(^{28}\)

Market Clearing Conditions The labor market clearing condition is given by

\[L = D_m \frac{\partial}{\partial W} \left[\frac{R^\gamma W^{1-\gamma}}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}} \right] \quad \text{(by producer of intermediate good } m) + D_d \frac{\partial}{\partial W} \frac{p_d}{A_d} \quad \text{(by producers of downstream good } d) + D_n \frac{1}{A_n} \quad \text{(by producers of good } n). \tag{11} \]

To ensure \(D_n > 0 \), we require that \(L > L \), where \(L \) denotes total employment in the industrial sector (that is, the non-numeraire part of the economy), or the sum of the first two terms on the right hand side of (11). As long as good \(n \) is produced in equilibrium (i.e., \(L > \bar{L} \)), wages are the

\(^{28}\)For simplicity, this benchmark model mainly aims to capture the rent-extraction mechanism of upstream SOEs via the vertical structure. Discussions on how to obtain endogenously variable markup (profit margin) will be deferred until subsection 6.1.
same across all the sectors, equal to the marginal product of labor in the agriculture sector:

\[W = A_n p_n, \]

(12)

which implies that wage increases with agricultural productivity \(A_n \) but does not change with \(K, A_m, A, \) or \(L. \) \(^{29}\) The capital market also clears:

\[K = D_m \frac{\partial R^{W_{1-\gamma}}}{\partial R} + D_d \frac{\partial P_d}{\partial R}, \]

(13)

By combining (13), (6), (9) and (12), we obtain the equilibrium prices as summarized in the following lemma.

Lemma 1 Suppose \(L \) is sufficiently large (to be strictly defined in Proposition 1). There exists a unique equilibrium, in which wage \(W \) is given by (12) and the other prices are given by

\[R = p_n \cdot \kappa^\xi \left[\left(A_n^{\alpha + \gamma (1-\alpha - \beta) -1} A_m^{1-\alpha - \beta} A \right)^{\epsilon -1} K^{-1} \right] \xi, \]

(14)

\[p_m = p_n \cdot \frac{\kappa^\xi \gamma A_n^{1-\gamma} A_m^{-1}}{\gamma (1-\gamma)^{1-\gamma}} \left[\left(A_n^{\alpha + \gamma (1-\alpha - \beta) -1} A_m^{1-\alpha - \beta} A \right)^{\epsilon -1} K^{-1} \right] \xi \gamma, \]

(15)

\[p_d = p_n \cdot \left(\frac{\gamma (1-\alpha - \beta) + \alpha \mu}{\kappa^\xi \mu} \right)^{\frac{1}{\gamma}} \left[A_n^{\alpha + \gamma (1-\alpha - \beta) -1} A_m^{1-\alpha - \beta} \mu K^{\alpha + \gamma (1-\alpha - \beta)} \right]^{-\xi}, \]

(16)

where \(\kappa \) and \(\xi \) are exogenous parameters defined as

\[\kappa = \frac{\gamma (1-\alpha - \beta) + \alpha \mu}{\mu} \left[\frac{\mu}{\gamma (1-\gamma)^{1-\gamma}} \right]^{1-\alpha - \beta} \left[\alpha \beta \mu (1-\alpha - \beta)^{1-\alpha - \beta} \right]^{1-\epsilon}, \]

(17)

\[\xi = \frac{1}{1 + \alpha (\epsilon - 1) + \gamma (1-\alpha - \beta)(\epsilon - 1)^{1-\epsilon}}. \]

(18)

Observe that (15) implies \(\frac{\partial p_m}{\partial A} > 0 \), that is, an increase in the TFP of private firms in the downstream leads to a higher price for the intermediate good monopolized by the upstream SOE. This is due to the general equilibrium effect that \(R \) is driven up as the marginal productivity of

\(^{29}\)When all the labor has been absorbed into the industrial sector, the equilibrium wage shall depend on \(K, A_m, A, \) and \(L. \) See equation (33) in Section 5. Ge and Yang (2014) document the facts about China’s wage structure.
capital increases \(\frac{\partial R}{\partial A} > 0 \) implied by (14), so \(p_m \) increases with the upstream production cost as the markup stays unchanged. On the other hand, (16) implies \(\frac{\partial p_d}{\partial A_m} < 0 \), that is, when the upstream SOE becomes more productive, it helps lower the price of the downstream good produced by private firms. This is because an increase in the upstream TFP lowers \(p_m \) (as implied by (15)), which dominates the resulting increase in \(R \).

Next, we characterize several key quantities and values in the equilibrium. Substituting (5), (6), and (7) into (11), then applying Lemma 1, we derive the following expression for the total employment in the industrial sector:

\[
L(A_n, A, A_m, K) \equiv \xi \left(\frac{1 - \gamma}{\gamma (1 - \alpha - \beta)} \right) + \beta \mu \left(\frac{A_n^{\epsilon - 1}}{A_n^{\epsilon}} \right)^{\gamma} K^{1 - \xi}. \tag{19}
\]

So an increase in industrial productivity, \(A \) or \(A_m \), will attract more labor from the agricultural sector into the industrial sector, whereas an increase in agricultural productivity \(A_n \) has the opposite effect on industrialization. Industrialization is also facilitated by capital accumulation \(\frac{\partial L(A_n, A, A_m, K)}{\partial K} > 0 \), as it tends to increase the marginal product of labor in the industrial sector.

When \(L > L(A_n, A, A_m, K) \) holds, the elite class consumes a positive amount of good \(n \). To ensure that the grassroots class also consumes good \(n \) \((I_g > p_n^{\epsilon - 1}) \), a stronger condition is required:

\[
L > \frac{\mu}{(1 - \gamma)(1 - \alpha - \beta) + \alpha \mu} L(A_n, A, A_m, K), \tag{20}
\]

which we impose throughout the paper. Observe that \(\frac{\mu(1 - \alpha - \beta) - \alpha \mu}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} > 1 \).

The following proposition characterizes several key macroeconomic variables in the equilibrium.

Proposition 1 Suppose (20) is true. In the autarky equilibrium, the upstream SOE profit \(\Pi_m \) and the total GDP (per capita) \(Y \) are given by

\[
\Pi_m = \frac{(1 - \alpha - \beta)(\mu - 1)}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} L(A_n, A, A_m, K) A_n p_n, \tag{21}
\]

\[
Y = \left[L + \frac{\alpha \mu + (1 - \alpha - \beta)(\gamma + \mu - 1)}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} L(A_n, A, A_m, K) \right] A_n p_n, \tag{22}
\]

where \(L(A_n, A, A_m, K) \) is given by (19).

Proof: Simple and skipped. This proposition demonstrates how the key macroeconomic vari-
ables in our model are related to structural change (industrialization) characterized by \mathcal{L}. (21) implies that the upstream SOE profit is proportional to the total industrial employment $\mathcal{T}(A_n, A, A_m, K)$, reflecting the fact that the upstream extracts more rent as industrialization deepens. (22) indicates that GDP strictly increases with total industrial employment, revealing that structural change drives up total output. Also, (22) and (19) together imply that aggregate output exhibits decreasing returns to scale with respect to the factor inputs, even though all the technologies are constant returns to scale. This “efficiency loss” is due to the upstream SOE’s extracting monopoly rent.

To highlight the determinants of the upstream SOE profit, we summarize the comparative static results of (21) as follows.

Proposition 2 Suppose (20) is true. In the autarky equilibrium, an increase in the productivity of downstream POEs will increase the monopoly profit of the upstream SOE ($\frac{\partial \Pi_m}{\partial A} > 0$). The SOE profit also increases with its own TFP and total capital stock ($\frac{\partial \Pi_m}{\partial A_m} > 0$ and $\frac{\partial \Pi_m}{\partial K} > 0$).

This proposition states that, under the vertical structure, an increase in the productivity of private firms in the downstream industry actually benefits the upstream SOE ($\frac{\partial \Pi_m}{\partial A} > 0$). This is a key result of the paper. The intuition is as follows. First, an increase in the downstream productivity A lowers the price for the downstream final good ($\frac{\partial p_d}{\partial A} < 0$) and hence increases its demand ($\frac{\partial D_d}{\partial A} > 0$), which in turn raises the demand for the upstream intermediate good ($\frac{\partial D_m}{\partial A} > 0$). Second, an increase in the downstream productivity A increases the equilibrium price for the upstream intermediate good ($\frac{\partial p_m}{\partial A} > 0$) as explained earlier and hence also increases the profit per unit of sale ($\frac{\mu - 1}{\mu} p_m$). These two forces jointly lead to a higher profit for the upstream SOE ($\frac{\partial \Pi_m}{\partial A} > 0$). Note that this prediction is diametrically opposite to the result in the existing literature, in which SOEs and private firms are typically assumed to compete in the same or substituting industries, which refer to as the horizontal structure (e.g., Hsieh and Klenow (2009), Song, Storesletten, and Zilibotti (2011)). In that setting, an increase in the productivity of private firms would hurt rather than boost the SOE profits due to the competition effect (see Appendix 1 for the mathematical proof).

Not surprisingly, upstream profits also increase with own TFP ($\frac{\partial \Pi_m}{\partial A_m} > 0$) because the demand increases ($\frac{\partial D_m}{\partial A_m} > 0$) as the price goes down ($\frac{\partial p_m}{\partial A_m} < 0$) and the effect of quantity expansion dominates the effect of profit reduction per unit of sale (the decrease in $\frac{\mu - 1}{\mu} p_m$). To see why $\frac{\partial \Pi_m}{\partial K} > 0$, note that when capital stock K increases, R goes down, so the production costs of both
the upstream and the downstream industries decrease; the demand for the intermediate good goes up, which dominates the effect that profit per unit of sale \((\frac{\mu-1}{\mu}p_m)\) goes down. Consequently, the total profit increases.\(^{30}\)

The following proposition characterizes the equilibrium when the upstream monopoly is completely eliminated (i.e., free entry) so that the upstream market is perfectly competitive.

Proposition 3 Suppose (20) is true. Under certain mild regularity conditions, when the upstream industry is fully liberalized and hence becomes perfectly competitive, the rental price of capital becomes larger, both the intermediate good and the downstream good become cheaper, total industrial employment and total GDP both become larger, and the welfare of the grassroots is strictly larger whereas the elite group becomes strictly worse off.

Proof: See the Appendix. The intuition for Proposition 3 is the following. Eliminating the upstream monopoly lowers the price of the intermediate good, which in turn lowers the price of the downstream good. Therefore, the output of the downstream industry increases, absorbing more labor from the agricultural sector. This, in turn, drives up the marginal product of capital and hence the rental price of capital. GDP becomes larger primarily because the elimination of the upstream monopoly facilitates structural change, moving more labor from the relatively low value-added agricultural sector into the relatively high value-added industrial sector. The total capital income gets larger because the increase in the total rental income of capital \((Rk)\) more than compensates for the dissipation of the monopoly profit \((\Pi_m)\). Meanwhile, the equilibrium wage stays unchanged unless agricultural productivity \(A_n\) changes, because \(L\) is sufficiently large so that the agricultural good is still produced. So the total GDP becomes larger from the factor income point of view.

In the past decade, China has witnessed a more rapid increase in the profits of SOEs than private firms, while the aggregate GDP has continued to increase rapidly. As such, SOE defenders claim that the existing SOEs significantly contribute to China’s economic exuberance and there is no need for major reforms as SOEs are doing better than non-SOEs. Our analysis stresses a diametrically opposite view: the unusual prosperity of SOEs is an undesirable symptom of the incompleteness of the SOE reforms. Our model highlights how an upstream SOE monopolist

30 We provide three alternative measures for profitability in the introduction. Throughout the model we characterize profit per firm. Other measures such as profit-to-revenue ratio and return on fixed assets are more carefully discussed in Section 6.
extracts rents from the private firms in the downstream industry. In particular, it is clear from Proposition 1 and Proposition 2 that both total GDP and upstream SOE profits would increase when the downstream private firms increase their TFP, even if the TFP of the upstream SOE remains unchanged. In other words, high profits of the upstream SOE can merely be a consequence of the dynamisms of the private downstream industry; it is the downstream private firms, rather than the SOE, that are the true driving force of GDP expansion. In fact, Proposition 3 makes it clear that the SOE monopoly is an obstacle to realizing the GDP potential of the economy.

Finally, we make one remark regarding competition between upstream SOEs and downstream non-SOEs. In our model, the vertical structure implies that there exists mutually beneficial complementarity between the SOE and private firms: a productivity increase in the downstream private firms raises the upstream SOE profit and a productivity increase in the upstream SOE reduces the unit cost of any downstream private firm \(\frac{\partial p}{\partial A_m} < 0 \), as explained earlier). However, competition still exists between the SOE and the private firms in the factor markets. The crowding-out effect can be even stronger when market imperfections exist. For example, if the financial market is plagued by contracting frictions with collateral constraints in the spirit of Kiyotaki and Moore (1997) and Bernanke and Gertler (1989), then the more profitable upstream SOEs enjoy advantages over private firms in obtaining loans, \textit{ceteris paribus}. With respect to the labor market, high profitability of SOEs means that they can pay a higher wage, which can steal talent away from the downstream private firms and hence undermine their performance. In short, the monopoly of SOEs in the upstream industry can create more distortions via the factor markets, beyond the distortions in the product market itself. Factor market distortions can be the consequence, rather than the cause, of the high profitability of SOEs.

3.2 Open Economy

Next, we extend our analysis to study how international trade affects the profit of the upstream SOE through the vertical structure. Trade globalization is particularly relevant for China’s reforms and development, especially after accession to the WTO in 2001 (see, e.g., Wang (2013, 2015), Yao (2014), Yu (2014) and Khandelwal, Schott and Wei (2014)).

Consider a world with two countries, home (H) and foreign (F). The home economy is identical to the one specified in Section 3.1. Country F is populated with a continuum of identical households with measure equal to unity. Each household is endowed with \(L^* \) units of labor and shares the
same preferences as households in country H, given by (1). All of the firms in country F are private and no capital or intermediate good is needed in production. Each foreign firm has free access to the following constant-returns-to-scale technologies: One unit of foreign labor, interpreted as a composite of raw labor and associated human capital, can produce either A^* units of good n or one unit of good d. All markets are perfectly competitive in country F. Trade is free between the two countries. This is a hybrid of Ricardian and Heckscher-Ohlin trade models.\footnote{We choose not to adopt the pure Ricardian trade framework primarily because we wish to make the model general enough to accommodate discussions on the role of capital intensities of different industries and relative labor abundance in the vertical structure and international trade argument, especially given that capital market imperfection is usually believed to be important for the issues under investigation.} Without loss of generality, A_n is normalized to unity.

To make our analysis relevant for China (country H in the model), we focus mainly on the case in which country H has a comparative advantage in good d, which may be interpreted as a composite of manufacturing goods. Country H exports d and imports good n, interpreted as tradable services and agricultural products. Suppose the labor endowment in country H is sufficiently large that in equilibrium country H produces and consumes both good d and good n and Country F also consumes both but only produces good n.\footnote{Other possible equilibrium patterns will be studied in Section 5 or in the Appendix.} The necessary and sufficient conditions for this equilibrium pattern are the following:

\begin{equation}
A^{1-\epsilon} < \frac{\mu L(A, A_m, K)}{2 [(1-\gamma)(1-\alpha-\beta) + \beta \mu]},
\end{equation}

\begin{equation}
\frac{\mu L(A, A_m, K)}{2 [(1-\gamma)(1-\alpha-\beta) + \beta \mu]} < L^* A^*,
\end{equation}

and

\begin{equation}
L > \frac{\mu - \gamma (1-\alpha-\beta) - \alpha \mu}{(1-\gamma)(1-\alpha-\beta) + \beta \mu} \overline{L}(A, A_m, K),
\end{equation}

where $\overline{L}(A, A_m, K)$ is the total industrial employment in country H and is given by

\begin{equation}
\overline{L}(A, A_m, K) \equiv 2^{18} \mathcal{L}(1, A, A_m, K),
\end{equation}

where ξ is given by (18).

Condition (23) ensures that country H has a comparative advantage in producing good d so that only country H produces good d and country F only produces and exports good n. Condition (24) ensures that country F consumes both good n and downstream good d. Condition (25) guarantees
that each agent in country H, even the grassroots, consumes a positive amount of good \(n \) (i.e., \(I_g > p_n p_d^{1-\epsilon} \)). For simplicity, assume the following is true:

\[
(\epsilon - 3) (1 - \alpha - \beta) + 1 \leq 0, \tag{27}
\]

in which case condition (25) automatically implies \(L > \bar{L}(A, A_m, K) \), ensuring that country H produces a positive amount of good \(n \) in equilibrium.

Lemma 2 Suppose (23)-(25) and (27) are true. In the free trade equilibrium, country H’s upstream SOE profit and total GDP are given by

\[
\Pi_m = \frac{(1 - \alpha - \beta)(\mu - 1)}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} \bar{L}(A, A_m, K)p_n, \tag{28}
\]

\[
Y = \left[L + \frac{\alpha \mu + (1 - \alpha - \beta)(\gamma + \mu - 1)}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} \bar{L}(A, A_m, K) \right] p_n, \tag{29}
\]

where \(\bar{L}(A, A_m, K) \) is given by (26).

Proof: See the Appendix. Compared with the autarky equilibrium (Proposition 1), the only difference is that now \(\bar{L}(A_n, A, A_m, K) \) is replaced by \(\bar{L}(A, A_m, K) \) in those formulas, reflecting the fact that international trade scales up the total demand for (and hence the output of) the downstream good \(d \). The comparative static results are also similar to those in Proposition 2. More formally, the comparison between autarky and open economy is stated in the following proposition.

Proposition 4 Suppose (23)-(25) and (27) are true. The monopoly profit of the upstream SOE and the GDP in country H are larger in the free trade equilibrium than in autarky.

The intuition is straightforward. Country H has comparative advantage in good \(d \), so openness to trade raises the aggregate demand for good \(d \), which in turn enhances the total demand for the intermediate good monopolized by the upstream SOE in country H. As a result, the total SOE

\[33\] Observe that the foreign productivity \(A^* \) and foreign labor endowment \(L^* \) are absent in the above formula under the given assumptions. There are two reasons. First, the foreign total wealth \(A^* L^* p_n \) is large enough that it has no impact on the export demand on good \(d \) due to the quasi-linear utility function. Second, country H has strict comparative advantage in good \(d \) in the current equilibrium (i.e., \(\frac{p_d}{p_n} < A^* \)). Hence, given the numeraire, \(A^* \) does not appear in any expressions of the equilibrium outcome except for the foreign wage. Later, we will explore the equilibrium properties when (23)-(25) and (27) are no longer all satisfied.
profit in country H becomes larger than in autarky. The total GDP is also larger, partly because the total profit Π_m is larger and partly because the rental capital income (RK) is larger than in autarky. In fact, $\bar{L}(A, A_m, K) > \bar{L}(1, A, A_m, K)$ precisely reflects the fact that trade openness boosts industrialization by absorbing more labor into the industrial sector, which leads to higher upstream profit and higher GDP.

Note that country H’s comparative advantage in good d crucially depends on the labor abundance condition (25), which ensures that the wage in country is sufficiently low to offset the markup cost for the intermediate input m. Later, we will examine what happens when condition (25) does not hold.

This simple benchmark model of an open economy formalizes an important and novel mechanism for how the high profitability of the SOEs in China depends on international trade. Entering WTO in 2001 facilitated China’s downstream exports and hence increased the induced aggregate demand for the upstream goods and services monopolized by SOEs. Consequently, SOE profits rise with trade liberalization. Consistent with our model predictions, trade liberalization also leads to GDP expansion by boosting industrialization.

Moreover, the analysis also suggests that a small change in external demand may lead to a large change in upstream SOE profits due to the markup price effect. This is consistent with Figure 1, which shows that SOE profitability increased disproportionately more than the non-state firms’ profitability when exports increased until 2007. SOE profitability dropped more dramatically than non-SOEs, when confronted by negative external demand shocks in 2008 due to the global financial crisis. This may explain why SOE profitability closely co-moves with the export-to-GDP ratio even though upstream SOEs do not directly participate in trade. If the economic structure is horizontal, then we cannot simultaneously explain all of the features observed in Figure 1.

Proposition 4 implies that the upstream SOE can benefit from export promotion policies for the downstream industries, as they stimulate foreign demand. Such export-facilitating policies include tariff reductions on imported inputs, tax reductions and loan subsidies, establishment of free-trade zones or processing trade zones, etc. It partly explains why the Chinese government (or the elite group) would have incentives to adopt various export-oriented trade policies. As long as foreign demand is sufficiently price elastic, the total profit gain by the upstream SOE may well exceed the subsidy cost. If we push the logic a step further, it may even help us better understand the current account surplus in China: the Chinese government (the elite group) would have incentives
to make loans to the US because it enables US consumers to import more from China and ultimately benefits upstream SOEs. This is particularly true given that China’s domestic consumption demand is indeed relatively weak, as partly captured by the quasi-linear utility function in our model.

4 Emergence of State Capitalism

The benchmark model explains how the upstream SOEs in China have become so profitable in the last decade via rent extraction through the vertical structure, which came into full shape after the massive privatization of downstream SOEs in the late 1990s. This section has two purposes. One is to show how to rationalize the emergence of the vertical structure in our framework. The other is to show how the same framework explains the opposite pattern observed in the 1990s: private firms outperformed SOEs in terms of profitability before the vertical structure fully emerged.

Consider the same setting as the benchmark model of autarky except that now the downstream good d is an aggregate of a continuum of differentiated goods:

$$c_d = \left(\int_0^1 c(i)^{\eta-1} \frac{d}{\eta-1} \right)^{\frac{\eta}{\eta-1}}, \text{ for } \eta > 1$$

(30)

where $c(i)$ is consumption of differentiated good i, $i \in [0, 1]$, and η is the elasticity of substitution between the differentiated goods. Let ϕ denote the fraction of downstream industries that are liberalized, where SOEs and non-SOEs are engaged in perfect competition and entry is free. The remaining $1 - \phi$ fraction of the industries are regulated such that each of them is monopolized by one state firm. The production function for a firm in industry i is still given by (2) for each $i \in [0, 1]$, where $A = A_p$ if it is a private firm, and $A = A_s$ if it is a state firm. We assume $A_s < A_p$.

We have $\phi = 0$ before the downstream liberalization and $\phi = 1$ when the vertical structure is fully developed (assumed in the previous sections).

Without subsidies, SOEs will be completely driven out by competitive private firms in the liberalized industries. The downstream SOEs are delegated to different managers so they are engaged in monopolistic competition among those regulated downstream industries. Suppose the elite group wants to maximize the total profit of all the upstream and downstream SOEs by choosing an optimal degree of downstream liberalization ϕ. 28
Proposition 5 When private firms are sufficiently more productive than state firms:

\[
\frac{A_p}{A_s} > \left(\frac{\eta - 1}{\eta} \right) \left[\frac{\eta - 1}{\eta} + \frac{\mu}{\eta (\mu - 1) (1 - \alpha - \beta)} \right]^{\frac{1}{\eta - 1}},
\]

the total profit of SOEs (and GDP) is maximized when all the downstream industries are fully liberalized (\(\phi = 1 \)).

Proof. See the Appendix. The intuition is as follows. When a downstream industry is liberalized, the SOE in that industry loses profit. On the other hand, this liberalized downstream industry will have a larger demand for upstream input than before and hence increase the upstream SOE profit. In addition, the profit of the remaining monopolist SOEs in the downstream will be reduced due to the cross-industry substitution effect. It turns out that when \(\frac{A_p}{A_s} \) is sufficiently large, the indirect profit gain in the upstream industry from downstream liberalization dominates the direct profit loss in all the liberalized industries. Thus the profit-maximizing \(\phi \) should be one, that is, liberalizing all downstream industries. This explains the endogenous emergence of state capitalism (upstream SOE monopoly plus downstream private competition with free entry).

Now consider the case when some downstream SOEs are subsidized by the government to keep operating and compete with private firms in the same liberalized industries. To break even, an SOE needs a subsidy equal to \(\frac{R^\alpha W^\beta p_m}{\alpha \beta (1 - \alpha - \beta)} \left(\frac{1}{A_s} - \frac{1}{A_p} \right) \) for each unit of output it produces. The more this SOE produces, the more subsidy it needs. In particular, it hurts the total SOE profits when the subsidy comes from other profitable SOEs such as upstream SOEs. This helps explain why in reality the aggregate SOE profitability was indeed lower than that of non-SOEs during the gradual liberalization reforms in the 1990s.

As Figure 1 shows, the profitability of SOEs was below that of non-SOEs in the early 1990s and the gap widened substantially between 1994 and 1998. SOEs experienced a sharp increase in profitability between 1998 and 2000, a period of massive privatization of downstream SOEs and upstream SOE consolidation (the “three-year battle” mentioned in Section 2), and finally SOEs surpassed non-SOEs in profitability around 2000.

We argue that this phenomenon is due to the gradual liberalization of downstream industries in the 1990s, a process through which the vertical structure of today’s state capitalism gradually emerged. As documented in Section 2, the market-oriented economic reform accelerated after 1992 and the openness to FDI and trade also deepened. With the entry and expansion of
high-productivity non-SOEs, domestic or foreign, many SOEs had to rely on subsidies from the government or other SOEs to maintain operation. This drove down the average profitability of SOEs, although the country as a whole grew rapidly due to improved resource allocation from the low-productivity SOEs to the high-productivity non-SOEs, as formalized in Song et al. (2011). During the period of massive SOE privatization in the downstream industries in 1998-2000, most of those money-losing SOEs exited from competitive downstream industries and, therefore, the average profitability of SOEs started to rise. The vertical structure featured in today’s state capitalism in China came into full shape around 2001, and the fortune of SOEs as a whole has been reversed since then.34

5 Sustainability of State Capitalism

Is this development model of state capitalism sustainable? Can the upstream SOE always make huge profits as the economy develops? We briefly address this important issue by extending the benchmark open-economy model in Section 3.2.35

First of all, the overall SOE profitability has been declining quite substantially since the global financial crisis occurred in 2008. As explained in Section 4, this phenomenon is consistent with the vertical-structure mechanism of our model in the following sense: When the downstream tradeable sector suffers the negative external demand shock, it will hurt the upstream SOE more severely than downstream non-SOEs because of the markup effect. More rigorously, this can be modelled as a large (and persistent) negative shock to A^*, country F’s productivity in good n. Quantitatively, this may be also related to other economic forces or policy changes that hamper China’s export.

Next, we explore sustainability from the long-run trend point of view. When K (or equivalently, A or A_m) gets big enough, condition (25) no longer holds. Specifically, suppose the following two

34 Brandt, Tombe and Zhu (2010) empirically find, but have not yet formally explained, the following “V”-shaped pattern of distortions in China’s TFP: it first decreased during 1985 and 1997 and then increased in the last decade. Our model can explain this non-monotonic pattern as follows. The distortion between state and non-state-controlled sectors declined as the SOEs gradually exited from the downstream industries during 1985-1997, and the distortion increased again in the last decade because the remaining SOEs monopolize the upstream industries and benefit disproportionately more from the trade liberalization than the downstream private sectors.

35 A full-blown answer to these questions may require an explicit dynamic framework, but the key insights we want to highlight can be obtained in the static model via comparative statics. For dynamic analyses of multi-sector growth models with trade, structural change and endogenous sequential reforms, see Ju, Lin, and Wang (2013) and Wang (2014b, 2015).
conditions are satisfied:
\[L < \overline{L}(A, A_m, K), \quad (31) \]
and
\[A^* L^* > \frac{\mu L^{[(1-\gamma)(1-\alpha - \beta) + \beta (e-1) - \epsilon]}}{2[(1- \gamma)(1- \alpha - \beta) + \beta \mu]} \overline{L}(A, A_m, K)^{\frac{1}{\epsilon}}. \quad (32) \]
Condition (31) implies that all the labor in country H is absorbed into the industrial sector. Condition (32) ensures that country F also consumes good \(n \) in equilibrium. Then under some additional auxiliary conditions, the equilibrium features complete specialization as follows (proof in the Appendix): Country H specializes in good \(d \), and country F specializes in good \(n \); both countries consume both goods. The wage rate is given by
\[W = \frac{(1-\gamma)(1-\alpha-\beta) + \beta \mu Y}{\mu}, \quad (33) \]
where output \(Y \) is given by
\[Y = B \cdot \left(A_m^{1-\alpha-\beta} A \right)^{\frac{\alpha-1}{\epsilon}} K^{(\alpha(1-\gamma)(1-\alpha-\beta)(e-1) - \epsilon)} L^{-(\gamma \beta + (1-\alpha)(1-\gamma))} p_n, \quad (34) \]
where \(B \) is a constant (see the appendix). (34) and (33) jointly imply that the wage will increase with domestic industrial productivity and capital stock \(\frac{\partial W}{\partial A} > 0, \frac{\partial W}{\partial A_m} > 0, \) and \(\frac{\partial W}{\partial K} > 0 \). This is different from the benchmark equilibrium, in which wage increases only with marginal productivity of labor in sector \(n \) \(A_n \), independent of \(A, A_m \) or \(K \). The reason is that now all the labor in sector \(n \) has been absorbed out so the economy has passed the so-called “Lewis turning point”.\(^{36}\)

Now we examine the effect of SOE monopoly on sustainability. We will show that the rising labor cost in country H (after passing its “Lewis turning point”) renders it increasingly vulnerable to international competition. Normalize the international price \(p_n \) to one. The new equilibrium price for good \(d \) is given by \(p_d(\mu) = \Gamma(\mu) \), where \(\Gamma(\cdot) \) is an increasing function.\(^{37}\)

\[^{36}\text{For more discussions, see Lewis (1954), Vollrath (2009), and Ge and Yang (2014).}\]

\[^{37}\text{This can be easily seen when no capital is needed for production.}\]
Imagine there is another developing country, V, which can produce good d at cost \(p_v \). Suppose \(p_v < A^* \) so that country F would import good d from country V in the absence of country H. Facing this potential competition, the upstream SOE in country H has to solve a limit pricing problem, because the rising labor cost in country H renders it increasingly vulnerable to international competition.

More concretely, when \(p_v \geq \Gamma(\mu) \), where \(\mu \) is given by (10), the upstream SOE in country H charges the original markup \(\mu \) and nothing would change. When \(p_v \in [p_d(1), \Gamma(\mu)] \) holds (due to, for example, country V having lower labor cost, weaker upstream monopoly, or higher upstream productivity), the SOE in country H has to lower its markup at least to \(\Gamma(p_v) \) to remain internationally competitive. If a complete elimination of the markup is still insufficient \((p_v < p_d(1)) \), then the upstream SOE must improve its productivity \(A_m \), otherwise it would strangle the development of the downstream capitalist industry, which in turn would hurt the upstream SOE itself.

The implication for China is that the markup and monopoly rent of upstream SOEs would eventually decrease or even disappear if they fail to sufficiently improve productivity, because its labor cost rises more rapidly after passing the “Lewis turning point”, whereas developing countries such as Vietnam or Bangladesh may effectively compete with China thanks to cheaper labor. In addition, if China’s population (labor force) shrinks sufficiently (for example, due to fertility decline or aging problems), then the rising labor cost would also increase \(p_d \), which hurts both the SOE profit and the total output. In other words, international trade in the downstream will eventually discipline the SOE behavior in the non-traded upstream sector via the value-added chain, even though downstream trade initially tolerates the low productivity and high markup pricing of the upstream SOE when labor is sufficiently cheap.\(^{38}\)

\(^{38}\) As a matter of fact, facing the pressure of economic slowdown, “China will promote market-oriented reform in SOEs...Administrative monopolies will be further broken and competitive business will be introduced...” (excerpt from “Decision of the Central Committee of the Communist Party of China (CPC) on Some Major Issues Concerning Comprehensively Deepening the Reform”, an official document issued by the Third Plenary Session of the 18th CPC Central Committee; see China Daily (oversea edition), November 16, 2013.)
6 Extensions and Discussions

6.1 Variable SOE Markup

The predictions of the benchmark model developed in Section 3 are consistent with most of the empirical facts and results presented in Section 2.39 However, the endogenous SOE markup μ is constant, given by (10) in the model, which does not tightly match Figure 1, where the profit margin of SOEs (profit-to-revenue ratio, or $\frac{H_m}{\Omega_m}$) changes over time. How to reconcile these?40 This subsection mainly addresses this issue.

First of all, the SOE profits and revenues in Figure 1 include those of both the upstream and downstream SOEs. In reality, there still exist SOEs in the downstream industries despite their gradual exit (that is, $\phi < 1$). The extended model developed in Section 4 implies that the ratio of aggregate SOE profits to aggregate SOE revenues is given by

$$\frac{\mu - 1}{\mu} \varpi(\phi) + \frac{1}{\eta} (1 - \varpi(\phi)), \forall \phi \in [0, 1],$$

(36)

where $\varpi(\phi)$ denotes the revenue share of upstream SOEs in all the SOEs. Recall $\frac{\mu - 1}{\mu}$ is the profit margin of the upstream SOEs whereas the profit margin of the downstream SOEs is $\frac{1}{\eta}$. Suppose the upstream SOEs have a higher profit margin than downstream firms ($\frac{\mu - 1}{\mu} > \frac{1}{\eta}$), as suggested by the empirical evidence shown in Section 2. We show that $\varpi'(\phi) > 0$, meaning more downstream sector liberalization leads to a higher revenue share of upstream SOEs, so (36) strictly increases with ϕ (see the appendix for the proof). In other words, the composition effect drives up the aggregate profit-to-revenue ratio for SOEs. This prediction is consistent with China’s experience as shown in Figure 1 for the period between 1998 and 2007.

Second, the constant markup obtained in the benchmark model ($\phi = 1$) results from the technical assumption that the downstream production function is Cobb-Douglas, which implies a constant expenditure share on intermediate good m. The markup is no longer constant when the downstream

\begin{itemize}
 \item The benchmark model implies $\frac{\partial m}{\partial A} > 0$; $\frac{\partial REV_m}{\partial A} > 0$; $\frac{\partial}{\partial A} \left(\frac{m}{\Omega_m} \right) > 0$; $\frac{\partial}{\partial A} \left(\frac{REV_m}{\Omega_m} \right) > 0$, which are exactly consistent with the empirical results in Table 2 for regressions (1), (2), (3), (4), respectively.
 \item The benchmark model implies $\frac{\partial}{\partial m} \left(\frac{m}{\Omega_m} \right) = 0$, inconsistent with the regression results reported in Column (6) in Table 2. It turns out that this inconsistence can be reconciled in the same way as that for the profit-to-revenue ratio, which is the focus of this subsection.
\end{itemize}
The production function is a general CES function as follows:

$$F_d(l, m) = \left[(A \cdot l)^{\frac{\rho-1}{\rho}} + m^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}, \rho \in [0, \infty], \quad (37)$$

where A is the labor-augmenting technology and ρ is the substitution elasticity between labor l and intermediate input m. Capital is omitted for simplicity. The upstream technology is $F_m(l) = A_m l$. Everything else is identical to the autarky model in Section 3.1, which is a special case with $\rho = 1$.

Proposition 6 When the downstream production function is general CES as in (37), the equilibrium markup $\mu \in (1, \infty)$ has the following property:

$$\frac{d\mu}{d(A/A_m)} = \begin{cases} < 0, & \text{when } \rho \in [0,1) \cup (\epsilon, \infty) \text{ or when } \rho = \infty \text{ and } 1 \leq \frac{A_m}{A} < \frac{\epsilon}{1-\epsilon} \\ = 0, & \text{when } \rho = 1 \text{ or } \rho = \epsilon \text{ or } \{\text{when } \rho = \infty \text{ and } \frac{A_m}{A} \in (\frac{\epsilon}{1-\epsilon}, \infty)\} \\ > 0, & \text{when } \rho \in (1, \epsilon) \\ \text{not defined,} & \text{when } \rho = \infty \text{ and } \frac{A_m}{A} \in (0, 1) \\ \end{cases}$$

Proof. See the appendix. The intuition is the following. Holding other things constant, when A_m increases (so p_m decreases), or equivalently A/A_m decreases, there are two distinct effects on markup. One is the substitution (complement) effect, that is, the downstream firms’ expenditure share on good m decreases as p_m decreases when $\rho \in [0,1)$, so it depresses markup μ. The other is the income effect, that is, a decrease in p_m results in a larger demand for the downstream good due to a higher real income. Consequently, the induced aggregate demand for upstream input m could increase or decrease, depending on which effect dominates. It turns out that when there exists poor substitution between labor and m in downstream production ($\rho \in [0,1)$), the income effect dominates, so the upstream SOE markup increases. When $\rho \in (\epsilon, \infty)$, the substitution effect induces a larger demand for m when p_m decreases, which also tends to increase the markup, working in the same direction as the net income effect, so the SOE markup increases.

Empirically, Song and Hsieh (2013) show that labor productivity of SOEs converged to non-SOEs within the manufacturing sector from 1998 to 2007. They do not differentiate upstream and downstream SOEs, but given the asymmetric presence of SOEs in upstream and downstream industries, their empirical findings are consistent with the labor productivity of upstream SOEs
converging to downstream POEs (that is, A/A_m decreases), so Proposition 6 implies that the SOE markup μ (and hence profit-to-revenue ratio) increases over time when $\rho \in [0, 1] \cup (\epsilon, \infty)$, consistent with Figure 1.

Third, in reality upstream SOEs are being consolidated horizontally (i.e., within-industry mergers) in the reform process as documented in Section 2, so the number of oligopolist SOEs is shrinking, which also tends to increase the SOE markup. More formally, imagine a new setting identical to that in Section 3.1 except that the upstream industry is now an oligopoly with N symmetric SOEs instead of a monopoly (a special case when $N = 1$). It is straightforward to show that the equilibrium markup will be $\mu' \equiv \frac{N[(1-\alpha-\beta)(\epsilon-1)+1]}{N[(1-\alpha-\beta)(\epsilon-1)+1]-1}$, which strictly increases when N goes down.

In summary, our benchmark model can easily be extended along the above three dimensions to be consistent with a time-varying profit margin.

6.2 Alternative Market Structure

In the benchmark model, downstream private firms by assumption have zero profit due to perfect competition, so it is natural for the model to generate a higher profitability of upstream SOEs than downstream POEs.\footnote{Note that profit in Figure 1 is accounting profit (i.e., revenue minus labor cost) instead of the economic profit (i.e., revenue minus labor and capital cost), so, theoretically speaking, the profit/revenue ratio can be strictly positive even if economic profit is zero.} However, this technical simplification is unimportant for the key mechanism we aim to highlight in this paper, namely, the vertical structure enables the upstream monopolist SOE to extract rents from the downstream private firms in the process of structural change and trade liberalization. To see this, suppose that the downstream industry now consists of a continuum of fully liberalized sub-industries as specified in (30) in Section 4. Each sub-industry is monopolized by a distinct private firm, which earns positive profits through monopolistic competition. It can be shown that, when L is sufficiently large, the upstream SOE profit Π_m and the total downstream POEs’ profit Π_d are given, respectively, by

$$\Pi_m = \frac{(\eta - 1)(1 - \alpha - \beta)(\mu - 1)}{\mu \eta} p_d^{1-\epsilon}$$

$$\Pi_d = \frac{1}{\eta - 1} p_d^{-\epsilon},$$

where

$$p_d = \frac{\left(\frac{\eta}{\eta - 1}\right)^{1+\epsilon[\alpha + \gamma(1-\alpha-\beta)]} \left(\frac{\mu}{\gamma(1-\alpha-\beta)+\alpha \mu}\right)^{2-\xi} \xi^{1-\epsilon\xi}}{(A_p A_m^{1-\alpha-\beta})^{t\xi} K^{[\alpha + \gamma(1-\alpha-\beta)]\xi}};$$
and \(\kappa \) and \(\xi \) are given by (17) and (18), respectively. It is clear that \(\frac{\partial \Pi_m}{\partial A_p} > 0 \) still holds, meaning that the upstream SOE can still extract more rents from the downstream POEs as the latter improve their productivity, while the POEs now make strictly positive profits \((\Pi_d > 0) \).

Alternatively, instead of comparing profitability of SOEs and POEs, we can compare their revenues, which are always positive independent of market structure assumptions. Empirically, average revenue per firm for SOEs has also exceeded that for POEs since the late 1990s, similar to the pattern for the profit margin in Figure 1.\(^{42}\) Table 2 in Subsection 2.3 shows that the vertical structure mechanism is empirically relevant for all of the six different performance measures including the level of revenue and ROFA.

6.3 Causes of Monopoly

Whereas natural monopoly may play a role, administrative monopoly seems to be dominant in accounting for the high profitability in most upstream industries. Theoretically speaking, natural monopoly alone does not permanently shield inefficient incumbent firms from being replaced by potential or existing competitors in that industry, especially when monopoly profits are persistently much higher than other industries or when the inefficiency of the incumbent is enormous.

When comparing the Chinese firms on the Global Fortune 500 with those from other countries (recall Table 1), we can learn the following facts. First, upstream industries with natural monopoly are not necessarily state-owned (e.g., AT&T is a private company). Second, natural monopoly itself does not necessarily imply high profitability. Third, the most profitable firms are not necessarily in the upstream industries. Therefore, natural monopoly or being in the upstream is neither a necessary nor a sufficient condition for high profitability. Governmental forces such as administrative monopoly in selected industries are presumably crucial in explaining why China’s SOEs are so profitable and so highly concentrated in upstream industries. In fact, if an increasing-returns-to-scale technology is introduced for the upstream SOE in our model, the vertical structure would enable this upstream SOE to extract even more profit in the process of industrialization and trade globalization, which makes our argument even stronger.

In our model, the high profitability of the upstream firm is due to its monopoly position, not to state ownership \emph{per se}. Theoretically speaking, if the monopoly position can be obtained by a non-SOE such as a politically connected private firm, our analysis in Sections 3 and 5 still applies.

\(^{42}\)See Figure A1c in the Appendix.
Nevertheless, Section 4 shows that the vertical structure emerges endogenously as an equilibrium, in which the upstream firm is granted monopoly power because it is state owned (see Proposition 5).

6.4 Further Remarks on Capital Intensity and Subsidy

First, notice that our model allows for any arbitrary difference in capital intensities between upstream and downstream industries (measured by γ and α, respectively). In fact, the key mechanism is valid even when no capital is needed for production at all ($\alpha = \gamma = 0$), so the capital intensity difference or capital market imperfection play no crucial role for our argument.

Second, it turns out that the ROFA (Return on Fixed Assets, measured by profit divided by fixed assets) of SOEs is lower than that of POEs in the industrial sector during the 1998-2007 period. How to reconcile this with the array of quantitative facts that SOEs are more profitable than non-SOEs shown earlier? Mathematically, it can be shown that, when the output market is not perfectly competitive, unequal profit-to-capital ratios across firms may arise even when the capital market is perfect. In particular, the profit-to-capital ratio is strictly lower for a firm with a higher capital intensity, when holding the (strictly positive) markup for the output price fixed (See the appendix for the proof). In other words, a lower ROFA does not necessarily mean that the firm has weaker market power or lower profitability, nor is it a direct evidence for the existence of financial subsidy.

7 Implications for Other Countries

Whereas this paper is mainly motivated by observations on China, the analytical framework may also help us think about related issues in other economies, especially in emerging markets and transitional economies.

For instance, Vietnam is another transitional socialist economy that has been growing fast since it adopted market-oriented reform in the mid 1980s. It joined WTO in 2006, five years after China. Vietnam essentially has followed a path similar to China’s by gradually liberalizing some downstream industries and actively participating in international trade (Malesky and London (2014)). Our analysis may alert Vietnam to the potential downside of China’s state capitalism.

India is another fast-growing emerging economy with a large population. However, for political...
economy reasons, the Indian government regulates upstream industries by setting prices lower than their production cost (such as electricity), so these key intermediate inputs and services are often unstably supplied. The vulnerability of the upstream sector chokes off the downstream manufacturing development and retards its industrialization and urbanization (Bardhan (2010)). As a consequence, the magnitudes of India’s manufacturing exports and the scale of FDI inflows are much smaller than those of China despite the fact that India joined WTO six years earlier than China and India’s labor is on average even cheaper than China’s (Bosworth and Collins (2008) and Wang (2013)).

Russia’s state capitalism is different from China’s. In Russia, upstream industries such as natural gas and oil are largely owned by the state but controlled by powerful oligarchs (Shleifer and Triesman (1999) and Myerson and Braguinsky (2007)). Russia has a relatively small population and high labor cost, which partly explains why the downstream manufacturing sector has no comparative advantage like that of China or Vietnam. Policy hurdles could be another important reason. For instance, Russia was not a member of WTO until August 2012. The underdevelopment of the downstream industries further compels the upstream oligarchs to directly sell most of the natural gas and oil abroad at the international price, which in turn has important implications for domestic industrialization, growth sustainability, and income distribution. Similar analyses may be applicable for other resource-abundant countries such as Brazil, Australia, and mid-east OPEC members.

8 Conclusion

We develop a simple model of China’s state capitalism that highlights a vertical structure featured in the recent Chinese economy, namely, some key upstream industries are controlled by the state via SOE monopoly, whereas downstream industries are largely liberalized and operate under capitalism. We show that this vertical structure, when combined with trade openness and labor abundance, can explain the puzzling fact that SOEs have achieved an unprecedented high profitability, dwarfing the performance of non-SOEs in the last decade, while the economy as a whole has still attained a high growth rate since China’s accession to the WTO in 2001. Our theory points to the incompleteness of the market-oriented reforms as the fundamental cause for the recent unusual prosperity of China’s SOEs. We also demonstrate how our framework can explain
why SOEs as a whole were outperformed by non-SOEs in the 1990s before this vertical structure of state capitalism had fully emerged.

This paper is mainly qualitative and it is only a first step toward a deeper understanding of state capitalism in countries like China. Several directions seem particularly appealing for future research. First, more comprehensive quantitative implications of the current model and its dynamic extension can be explored.43 Second, various political-economy aspects of such a model of state capitalism can be studied (Roland (2000), Li and Zhou (2005), Xu (2011), Wang (2013), Yao (2014)). Third, it seems interesting to study firm dynamics, size distributions, and industry dynamics by introducing cross-firm productivity heterogeneity into the vertical structure (see Melitz (2003), Luttmer (2007), or Restuccia and Rogerson (2008), Samaneigo (2010)). Fourth, factor market frictions can be incorporated to quantitatively gauge their impact on firm profits, GDP, as well as income distribution within this framework of state capitalism. We believe that a deep understanding of state capitalism is of fundamental importance to both China and the world economy.

43 Wang (2014b) develops a two-country dynamic general-equilibrium model with infinite industries of different capital intensities to show how international trade and dynamic trade policies may affect industrialization and industry upgrading from labor-intensive ones to capital-intensive ones.
References
Comparative Economics 42: 286-303

42
Math Appendix (for online publication)

1. Horizontal Structure

This is to show that SOE profit is hurt by an increase in the TFP of private firms under horizontal structure, which is opposite to the prediction in the vertical structure. For ease of comparison, we adopt a horizontal-structure setup similar to Song et al. (2011). Suppose households’ utility function is a strictly increasing function of the aggregate consumption. The final output Y is produced by “horizontally” combining the output of the private firm product Y_p and that of the SOE product Y_s in a CES form with substitution elasticity σ:

$$Y = (Y_p^{\frac{\sigma-1}{\sigma}} + Y_s^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}, \sigma > 1.$$

Suppose labor is the only input that the technologies are given by

$$Y_p = A_p L_p; Y_s = A_s L_s.$$

Furthermore, assume perfect competition and free entry in the private sector but a monopoly market structure in the sector that produces Y_s. Labor market clears in this autarky general equilibrium

$$L_p + L_s = L,$$

where L is the total labor endowment. It can be shown that the profit of the SOE is given by

$$\Pi = \frac{WL}{\sigma \left(\frac{A_s}{A_p} \right)^{1-\sigma} + 1} - 1.$$

Suppose we normalize wage to be unity. Clearly, $\frac{\partial \Pi}{\partial A_p} < 0$. That is, an increase in private TFP hurts the monopoly profit of the SOE when private firms and the SOE are producing horizontally differentiated goods. The intuition is that the demand for the SOE product declines as the private good becomes cheaper due to its productivity increase, hence the SOE profit goes down. It is diametrically different from the prediction under vertical structure ($\frac{\partial \Pi_{m}}{\partial A} > 0$), as highlighted in Proposition 2.
Suppose, instead, we choose the final output as the numeraire, then we have

\[W = \left[\left(\frac{1}{A_s} \frac{\sigma}{\sigma - 1} \right)^{1-\sigma} + \left(\frac{1}{A_p} \right)^{1-\sigma} \right]^{-\frac{1}{1-\sigma}}, \]

and therefore,

\[\Pi = \frac{\left[\left(\frac{1}{A_s} \frac{\sigma}{\sigma - 1} \right)^{1-\sigma} + \left(\frac{1}{A_p} \right)^{1-\sigma} \right]^{-\frac{1}{1-\sigma}} L}{\sigma \left[\left(\frac{A_s}{A_p} \frac{\sigma - 1}{\sigma} \right)^{1-\sigma} + 1 \right] - 1}. \]

We can show that \(\frac{\partial \Pi}{\partial A_p} < 0 \) holds whenever \(\sigma \geq 2 \). It also holds when \(\sigma \in (1, 2) \) and

\[\frac{A_s}{A_p} > \frac{\sigma}{\sigma - 1} \left[\frac{(\sigma - 1)^2}{\sigma(2 - \sigma)} \right]^{\frac{1}{1-\sigma}}. \] (38)

The intuition is as follows. When \(A_p \) increases, it has a positive income effect on the demand for SOE product, which increases the SOE profit. On the other hand, it also has a negative substitution effect on the demand for the SOE product, which reduces the SOE profit. When the substitution elasticity between the SOE product and the private product is sufficiently large (\(\sigma \geq 2 \)), the substitution effect dominates, so \(\frac{\partial \Pi}{\partial A_p} < 0 \). When \(\sigma \in (1, 2) \), the productivity of private firms has to be sufficiently small (that is, (38) is satisfied) so that the substitution effect still dominates the income effect.

2. Proof of Proposition 3

One set of sufficient conditions is that the upstream technology is sufficiently capital intensive whereas the downstream technology is sufficiently labor intensive. More precisely, \(\gamma = 1 \), \(\alpha > 0 \), and \(\beta \) is sufficiently large such that

\[\left[1 + \frac{1}{(1 - \alpha - \beta)(\epsilon - 1)} \right]^{\alpha} < \left(1 + \frac{\alpha}{1 - \beta} \frac{1}{(1 - \alpha - \beta)(\epsilon - 1)} \right)^{1-\beta}. \] (39)

The key results (i.e., predictions for upstream and downstream prices, total industrial employment, industrial output, welfare, etc.) also hold when capital is not needed for production at all, namely, \(\gamma = \alpha = 0 \), even though now the rental price is always \(R = 0 \).

Now we provide the proof for the above claim and also the characterization for the general case.
Consider the general case in which everything is identical to the setting in Section 3.1 except that the upstream industry has \(N \) symmetric SOEs, where \(N \) can be any positive integer. In particular, when \(N = 1 \), it returns to the original setting with only one firm monopolizing the upstream industry. When \(N \to \infty \), the upstream becomes perfectly competitive. It is straightforward to show that for any arbitrary \(N \), (14)-(19), (21) and (22) all still hold except that the markup \(\mu \) is now given by

\[
\mu = \frac{N[(1-\alpha-\beta)(\epsilon-1)+1]}{N[(1-\alpha-\beta)(\epsilon-1)+1]-1},
\]

which obviously decreases with \(N \). For Proposition 3, it suffices to compare the two cases when \(N = 1 \) and \(N = \infty \). To avoid the trivial cases, we always assume that the upstream intermediate input is crucial for downstream production, i.e., \(1-\alpha-\beta > 0 \).

[1] (14), (17) and (18) immediately implies that \(R \) strictly decreases with \(\mu \) if and only if \(\alpha > 0 \) or \(\gamma > 0 \) or both. So \(R \) strictly increases after upstream liberalization. \(R = 0 \) always holds if \(\alpha = \gamma = 0 \).

[2] Using (15), (17) and (18), we can show that \(p_m \) strictly increases with \(\mu \) when \(\alpha > 0 \) or \(1 > \gamma > 0 \), or both. More precisely,

\[
p_m = p_n \cdot \frac{\mu x^n A_{1-n} A_{m-1}^{1-\gamma}}{\gamma (1-\gamma)^{1-\gamma}} \propto \mu x^n \propto [\gamma (1-\alpha-\beta) + \alpha \mu]^{\xi \gamma} \mu^{[(1-\alpha-\beta)(1-\epsilon)-1] \xi \gamma + 1}
\]

so \(\frac{\partial p_m}{\partial \mu} > 0 \) if and only if

\[
\xi \gamma \alpha \mu + [\gamma (1-\alpha-\beta) + \alpha \mu] \left\{ \frac{\alpha (\epsilon-1) + 1 - \gamma}{1 + \alpha (\epsilon-1) + \gamma (1-\alpha-\beta)(\epsilon-1)} \right\} > 0,
\]

which is always true when \(\alpha > 0 \) or \(1 > \gamma > 0 \), or both. For binary comparison, \(p_m \) becomes strictly smaller after the full liberalization of the upstream if and only if

\[
[\gamma (1-\alpha-\beta) + \alpha \mu]^{\xi \gamma} \mu^{[(1-\alpha-\beta)(1-\epsilon)-1] \xi \gamma + 1} > [\gamma (1-\alpha-\beta) + \alpha]^{\xi \gamma},
\]

\[
[\gamma (1-\alpha-\beta) + \alpha \mu]^{\xi \gamma} \mu^{\frac{1-\gamma + \alpha (\epsilon-1)}{1-\gamma + \alpha (\epsilon-1) + \gamma (1-\alpha-\beta)(\epsilon-1)}} > [\gamma (1-\alpha-\beta) + \alpha]^{\xi \gamma}
\]

which is always true except when \(1-\gamma = \alpha = 0 \). It is also true when \(\alpha = \gamma = 0 \), because in that case \(p_m \) drops from \(\mu \frac{A_n}{A_m} p_n \to \frac{A_n}{A_m} p_n \).
Using (16), (17) and (18), we can show that \(p_d \) becomes strictly smaller after the full liberalization of the upstream industry if and only if
\[
\left[\frac{(1 - \alpha - \beta)(\epsilon - 1) + 1}{(1 - \alpha - \beta)(\epsilon - 1)} \right]^{\alpha+(\gamma-1)(1-\alpha-\beta)} < \left[\frac{\gamma (1 - \alpha - \beta) + \alpha + \frac{\alpha}{(1-\alpha-\beta)(\epsilon-1)}}{\gamma (1 - \alpha - \beta) + \alpha} \right]^{\alpha+\gamma(1-\alpha-\beta)}. \tag{40}
\]
In particular, it holds when \(\gamma = 1, \alpha > 0, \) and \(\beta \) is sufficiently large (\(\frac{1-\beta}{\alpha} \) is sufficiently small) such that
\[
\left[1 + \frac{1}{(1 - \alpha - \beta)(\epsilon - 1)} \right] < \left[1 + \frac{\alpha}{(1 - \alpha - \beta)(\epsilon - 1)} \right]^{\frac{1-\beta}{\alpha}}.
\]
In addition, \(p_d \) also becomes strictly smaller after the full liberalization when \(\alpha = \gamma = 0, \) because \(p_d = \frac{W_{m}^{\beta}p_{m}^{1-\beta}}{A_{\beta}^\beta(1-\beta)^{1-\beta}}, \) where \(p_m \) decreases and \(W \) remains constant (equal to \(A_n p_n \)).

Downstream industrial output in equilibrium is given by (5), which strictly decreases with \(p_d \). So the total output for downstream good \(d \) strictly increases after the full liberalization of the upstream if and only if (39) is true.

Total industrial employment, by invoking (19), (17) and (18), is given by
\[
\ell(A_n, A, A_m, K) = \mu^{(1-\beta)(1-\epsilon)-1} \left[(1 \lineskip 0cm
\left[1 + \frac{1}{(1 - \alpha - \beta)(\epsilon - 1)} \right] \right]^{\alpha+(\gamma-1)(1-\alpha-\beta)} \left[1 - \frac{(1-\gamma)(1-\alpha-\beta)}{1+(1-\alpha-\beta)(\epsilon-1)} \right]^{\frac{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)}{(1-\gamma)(1-\alpha-\beta)(\epsilon-1)}},
\]
which becomes strictly larger after the upstream full liberalization if and only if
\[
\left[\frac{(1 - \alpha - \beta)(\epsilon - 1) + 1}{(1 - \alpha - \beta)(\epsilon - 1)} \right]^{\alpha+(\gamma-1)(1-\alpha-\beta)} \left[1 - \frac{(1-\gamma)(1-\alpha-\beta)}{1+(1-\alpha-\beta)(\epsilon-1)} \right] < \left[\frac{\gamma (1 - \alpha - \beta) + \alpha + \frac{\alpha}{(1-\alpha-\beta)(\epsilon-1)}}{\gamma (1 - \alpha - \beta) + \alpha} \right]^{\alpha+\gamma(1-\alpha-\beta)}.
\]
In particular, the above inequality is equivalent to (39) when \(\gamma = 1 \) and \(\alpha > 0. \) When \(\alpha = \gamma = 0, \) \(\ell(A_n, A, A_m, K) \propto \mu^{(1-\beta)(1-\epsilon)-1} [(1-\beta) + \beta\mu], \) which strictly decreases with \(\mu, \) so it becomes strictly larger after full liberalization.

GDP (per capita) \(Y, \) by revoking (22), strictly increases with \(\frac{\alpha\mu+(1-\alpha-\beta)(\gamma+\mu-1)}{(1-\gamma)(1-\alpha-\beta)+\beta\mu} \ell(A_n, A, A_m, K), \)
or

\[
\left[\frac{\gamma (1 - \alpha - \beta) + \alpha \mu \left\{ \mu^{1-\alpha-\beta} \right\}^{1-\epsilon}}{\mu} \right]^{\xi} \left(\frac{(1 - \beta) \mu - (1 - \alpha - \beta) (1 - \gamma)}{\gamma (1 - \alpha - \beta) + \alpha \mu} \right),
\]

which becomes strictly larger after full liberalization if and only if

\[
\left[\frac{\gamma (1 - \alpha - \beta) + \alpha \mu \left\{ \mu^{1-\alpha-\beta} \right\}^{1-\epsilon}}{\mu} \right]^{\xi} \left(\frac{(1 - \beta) \mu - (1 - \alpha - \beta) (1 - \gamma)}{\gamma (1 - \alpha - \beta) + \alpha \mu} \right) < \left[\gamma (1 - \alpha - \beta) + \alpha \right]^{\xi-1} \left[(1 - \beta) - (1 - \alpha - \beta) (1 - \gamma) \right],
\]

which is equivalent to (39) when \(\gamma = 1 \) and \(\alpha > 0 \). However, \(Y \) becomes smaller after full liberalization when \(\alpha = \gamma = 0 \), because, without capital, we have \(Y = WL + \Pi_m \), where \(W \) stays unchanged but \(\Pi_m \) becomes zero after upstream liberalization.

[7] Welfare. Using (4) and (5), together with (22), we can derive the welfare of an average household (assuming equal income across all the agents after lump-sum transfer from elite to grass roots):

\[
u(c_n, c_d) = c_n + \frac{\epsilon}{\epsilon - 1} c_d^{\epsilon - 1} = WL + RK + \Pi_m - \left(\frac{p_n}{p_d} \right)^{\epsilon - 1} + \frac{\epsilon}{\epsilon - 1} \left[\left(\frac{p_n}{p_d} \right)^{\epsilon - 1} \right] c_d^{\epsilon - 1}
\]

\[= A_n L + \frac{x^\xi \left((1 - \alpha - \beta) (\mu - 1) + \frac{\mu}{\epsilon - 1} \right)}{\gamma (1 - \alpha - \beta) + \alpha \mu} \left[A_{n}^{\alpha + \gamma (1 - \alpha - \beta) - 1} A_{m}^{1 - \alpha - \beta} AK_{\alpha + \gamma (1 - \alpha - \beta)} \right]^{\xi (\epsilon - 1)},
\]

which becomes strictly larger after full liberalization when \(\gamma \) and \(\alpha \) are not both zero if and only if

\[
\left((1 - \alpha - \beta) (\mu - 1) + \frac{\mu}{\epsilon - 1} \right) \frac{\gamma (1 - \alpha - \beta) + \alpha \mu}{(1 - \alpha - \beta) (\epsilon - 1) + 1} < \frac{1}{\epsilon - 1} \frac{\alpha}{\gamma (1 - \alpha - \beta) + \alpha},
\]

which is never possible.

The welfare of a representative grass-roots household is given by

\[
A_n L + \frac{x^\xi \left((1 - \alpha - \beta) (\mu - 1) + \frac{\mu}{\epsilon - 1} \right)}{\gamma (1 - \alpha - \beta) + \alpha \mu} \left[A_{n}^{\alpha + \gamma (1 - \alpha - \beta) - 1} A_{m}^{1 - \alpha - \beta} AK_{\alpha + \gamma (1 - \alpha - \beta)} \right]^{\xi (\epsilon - 1)} - \frac{\Pi_m}{p_n}
\]

\[= A_n L + \frac{x^\xi \left((1 - \alpha - \beta) (\mu - 1) + \frac{\mu}{\epsilon - 1} \right)}{\gamma (1 - \alpha - \beta) + \alpha \mu} \left[A_{n}^{\alpha + \gamma (1 - \alpha - \beta) - 1} A_{m}^{1 - \alpha - \beta} AK_{\alpha + \gamma (1 - \alpha - \beta)} \right]^{\xi (\epsilon - 1)} - \frac{(1 - \alpha - \beta) (\mu - 1)}{(1 - \gamma) (1 - \alpha - \beta) + \beta \mu} T(A_n, A, A_m, K) A_n
\]
which strictly increases with

\[
[\gamma (1 - \alpha - \beta) + \alpha \mu]^{-\frac{\alpha + \gamma (1 - \alpha - \beta)}{1 + \alpha (\epsilon - 1) + \gamma (1 - \alpha - \beta) (\epsilon - 1)}} \mu^{\frac{\alpha + (\gamma - 1)(1 - \alpha - \beta)}{1 + \alpha (\epsilon - 1) + \gamma (1 - \alpha - \beta) (\epsilon - 1)}},
\]

which becomes strictly larger after full liberalization when \(\gamma \) and \(\alpha \) are not both zero iff

\[
[\gamma (1 - \alpha - \beta) + \alpha \mu]^{-[\alpha + \gamma (1 - \alpha - \beta)]} \mu^{\alpha + (\gamma - 1)(1 - \alpha - \beta)} < [\gamma (1 - \alpha - \beta) + \alpha]^{-[\alpha + \gamma (1 - \alpha - \beta)]}
\]
or

\[
\left[1 + \frac{1}{(1 - \alpha - \beta)(\epsilon - 1)}\right]^{\alpha + (\gamma - 1)(1 - \alpha - \beta)} < \left[1 + \frac{\alpha}{(1 - \alpha - \beta)(\epsilon - 1)}\right]^{\alpha + (\gamma - 1)(1 - \alpha - \beta)},
\]

which is equivalent to (39) when \(\gamma = 1 \) and \(\alpha > 0 \). When \(\alpha = \gamma = 0 \), the grass-roots welfare also becomes strictly larger after full liberalization because their income remains constant but \(p_d \) becomes strictly lower.

On the other hand, the welfare of a representative elite household becomes strictly worse off after upstream liberalization because each earns income \(WL + RK + \Pi m \), which is strictly larger than average income \(Y \) whenever \(\Pi m > 0 \). Using (4) and (5), together with (22), we can derive the welfare of a household with the average income level \(Y \) is given by

\[
u(c_n, c_d) = c_n + \frac{\epsilon}{\epsilon - 1} c_d^{\frac{\epsilon - 1}{\epsilon}} = WL + RK + \Pi m - \left(\frac{p_n}{p_d}\right)^{\epsilon - 1} + \frac{\epsilon}{\epsilon - 1} \left(\frac{p_n}{p_d}\right)^{\frac{\epsilon - 1}{\epsilon}}
\]

\[
= A_n L + \frac{\mu}{\gamma (1 - \alpha - \beta) + \alpha \mu} \left\{ A_n^{\alpha + \gamma (1 - \alpha - \beta) - 1} A_m^{1 - \alpha - \beta} AK^{\alpha + \gamma (1 - \alpha - \beta)} \right\}^{(\epsilon - 1)},
\]

which becomes strictly smaller after full liberalization when \(\gamma \) and \(\alpha \) are not both zero iff

\[
(1 - \alpha - \beta)(\epsilon - 1) + 1 > \frac{\alpha}{\gamma (1 - \alpha - \beta) + \alpha},
\]

which is always true. So the welfare loss of an elite household is even larger after full liberalization. When \(\alpha = \gamma = 0 \), each of the elite households’ welfare also becomes strictly smaller after full liberalization when \(\theta \) is sufficiently small, because their income drops too much despite the decrease in \(p_d \).

3. Proof of Lemma 2
The aggregate consumption of the numeraire good in country H is

\[\frac{1}{A \alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}} \left(\frac{\mu}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}} \right)^{1-\alpha-\beta} \left(\frac{K}{2b} \right)^{-\frac{[\alpha+\gamma(1-\alpha-\beta)]}{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)}} < A^*, \]

where \(b \equiv \left[A_m^{(1-\alpha-\beta)} A \right]^{\epsilon-1} \). The positive production of good \(n \) in country H requires \(L > \bar{L} \), where \(\bar{L} \equiv 2^{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \bar{L}(1, A, A_m, K) \). \(\bar{L} \) is the total industrial employment in country H.

Positive consumption of good \(n \) in country F requires \(D_n^* = A^* L^* - \frac{p_m D_n^*}{W} > 0 \), or equivalently

\[A^* L^* - \left(\frac{A \alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}}{\mu} \left(\frac{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}}{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \right) \right)^{\epsilon-1} > 0. \]

The individual consumption in country H is given by

\[
\begin{align*}
c_n^e &= L + \left(\frac{K}{2b} \right)^{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \cdot K + \frac{1}{A \alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}} \left(\frac{\mu}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}} \right)^{1-\epsilon} \left(\frac{K}{2b} \right)^{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \cdot \frac{1}{\beta (1 - \alpha - \beta) (\epsilon - 1) + 1}, \\
c_n^g &= L + \left(\frac{K}{2b} \right)^{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \cdot K - \frac{1}{A \alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}} \left(\frac{\mu}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}} \right)^{1-\epsilon} \left(\frac{K}{2b} \right)^{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \cdot \frac{1}{\beta (1 - \alpha - \beta) (\epsilon - 1) + 1}, \\
c_d^j &= \left\{ \frac{1}{A \alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}} \left(\frac{\mu}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}} \right)^{1-\alpha-\beta} \left(\frac{K}{2b} \right)^{-\frac{[\alpha+\gamma(1-\alpha-\beta)]}{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)}} \right\}^{-\epsilon}, \\
\forall j &\in \{ e, g \}.
\end{align*}
\]

The aggregate consumption of the numeraire good in country H is

\[
C_n = L + \left(\frac{K}{2b} \right)^{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \cdot K + \frac{1}{A \alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}} \left(\frac{\mu}{A_m \gamma^\gamma (1 - \gamma)^{1-\gamma}} \right)^{1-\epsilon} \left(\frac{K}{2b} \right)^{1+\alpha(\epsilon-1)+\gamma(1-\alpha-\beta)(\epsilon-1)} \cdot \frac{2(1 - \alpha - \beta)}{\beta (1 - \alpha - \beta) (\epsilon - 1) + 1} - 1. \]
For completeness, the total (or individual) consumption in country F is given by

\[c_n^* = A^* L^* - \left(\frac{1}{A \alpha^\beta} \right)^{1-\epsilon} \left(\frac{\mu}{A_m \gamma^{\gamma} (1-\gamma)^{1-\gamma}} \right)^{(1-\alpha-\beta)(1-\epsilon)} \left(\frac{K}{2b} \right)^{\frac{\alpha(1-\gamma)+\gamma (1-\alpha-\beta)}{2}} \]

and

\[c_d^* = \left\{ \left(\frac{1}{A \alpha^\beta} \right)^{1-\alpha-\beta} \left(\frac{\mu}{A_m \gamma^{\gamma} (1-\gamma)^{1-\gamma}} \right)^{1-\alpha-\beta} \left(\frac{K}{2b} \right)^{\frac{-\alpha(1-\gamma)+\gamma (1-\alpha-\beta)}{2}} \right\}^{1-\epsilon} \]

Condition (24) guarantees that \(c_n^* > 0\). The total GDP in country F is \(I^* = L^* W^* = L^* A^* W\). To ensure that even the grassroots in country H consumes a positive amount of good n, we require \(R K + WL > p_d^1\), which is equivalent to \(L > \frac{\lambda}{(1-\gamma)^{1-\gamma} + \gamma (1-\alpha-\beta)(1-\epsilon)} \). Therefore, condition \(\frac{\lambda}{(1-\gamma)^{1-\gamma} + \gamma (1-\alpha-\beta)(1-\epsilon)} \geq 1\) means that \((1-\alpha-\beta)(1-3) + 1 \leq 0\). The capital market clearing condition implies

\[R = p_n \cdot \left[A_m^{1-\alpha-\beta} A \right]^{\frac{1-\gamma}{\gamma^{(1-\gamma)^{1-\gamma}}}} \left(\frac{K}{2} \right)^{\frac{1+\alpha (1-\gamma)+\gamma (1-\alpha-\beta)(1-\epsilon)}{2}} \cdot \]

Observe that \(R\) is still given by (14) except that \(K\) is replaced by \(K^2\). To understand why, first notice that the demand functions for good d are identical in the two countries \((D_d = D_d^* = (p_d \cdot p_d^-)^\epsilon\), due to the lack of income effect implied by the quasi-linear utility function), so the monopolist SOE charges the same markup as in the autarky case (9). As the world total demand for good d doubles the domestic demand in country H, the demand for the intermediate good is also scaled up (recall that good d is produced only in country H). Labor is abundant in country H but only half of the capital endowment is used to serve domestic demand for good d, plus the fact that all the technologies are constant returns to scale, so in equilibrium \(K\) is replaced by \(K^2\) in formula (14). Similarly, (9) and (40) jointly yield

\[p_m = p_n \cdot \left(\frac{\mu}{A_m \gamma^{\gamma} (1-\gamma)^{1-\gamma}} \right)^{\frac{(1-\gamma)}{\gamma^{(1-\gamma)^{1-\gamma}}}} \left(\frac{K}{2} \right)^{\frac{1+\alpha (1-\gamma)+\gamma (1-\alpha-\beta)(1-\epsilon)}{2}} \cdot \]

The same is true for the price of downstream good d:

\[p_d = p_n \cdot \left[\frac{\mu}{\gamma^{\gamma (1-\gamma)^{1-\gamma}}} \right]^{1-\alpha-\beta} \left[A_m^{1-\alpha-\beta} A \right]^{\frac{1+\alpha (1-\gamma)+\gamma (1-\alpha-\beta)(1-\epsilon)}{2}} \left(\frac{K}{2} \right)^{\frac{1+\alpha (1-\gamma)+\gamma (1-\alpha-\beta)(1-\epsilon)}{2}} \cdot \]
4. Proof for Section 5

The labor market clearing condition in country H is

\[L = (D_d + D_d^*) \cdot \frac{\partial p_d}{\partial W} + D_m \frac{\partial}{\partial W} \left[A^{\alpha \beta} \beta (1 - \alpha - \beta)^{1-\alpha-\beta} \right] \beta \left[1 + \frac{(1 - \gamma) (1 - \alpha - \beta)}{\bar{\mu} \beta} \right], \tag{42} \]

The capital market clearing condition in country H is

\[K = (D_d + D_d^*) \cdot \frac{\partial p_d}{\partial W} + D_m \frac{\partial}{\partial W} \left[A^{\alpha \beta} \beta (1 - \alpha - \beta)^{1-\alpha-\beta} \right], \]

which implies

\[K = 2b \left(\frac{R}{W} \right)^{-[1+\alpha(\epsilon-1) + \gamma (1-\alpha-\beta)(\epsilon-1)]} \cdot \left(\frac{\bar{\mu}}{\beta \mu} \right)^\epsilon, \]

where \(b \equiv \left[A^{(1-\alpha-\beta)} \right]^{\epsilon-1} \). These two factor market clearing conditions imply

\[\frac{\mu (1-\alpha-\beta)(1-\epsilon-1)\gamma (1-\alpha-\beta) + \alpha \mu}{[\beta \mu]^{1+\epsilon}} = \frac{R}{K} \]

When \(\bar{\mu} = \mu \), the above equation becomes

\[\frac{R}{W} = \frac{\gamma (1-\alpha-\beta) + \alpha \mu}{\beta \mu + (1-\gamma)(1-\alpha-\beta)} \cdot \frac{L}{K}. \]

Consequently, \(W^* = A^* p_n \),

\[W = (2b)^\frac{1}{\epsilon} \left[L \cdot \frac{\gamma (1-\alpha-\beta) + \alpha \mu}{(1-\gamma)(1-\alpha-\beta) + \beta \mu} \right]^{\epsilon} \frac{K^{(1+\gamma (1-\alpha-\beta)(\epsilon-1))}}{[\beta \mu (1-\gamma)(1-\alpha-\beta)]^{1+\epsilon}} p_n, \tag{43} \]

\[R = (2b)^\frac{1}{\epsilon} \left[L \cdot \frac{\gamma (1-\alpha-\beta) + \alpha \mu}{(1-\gamma)(1-\alpha-\beta) + \beta \mu} \right]^{\epsilon} \frac{K^{(1+\gamma (1-\alpha-\beta)(\epsilon-1))}}{[\beta \mu (1-\gamma)(1-\alpha-\beta)]^{1+\epsilon}} p_n. \]

\[p_m = (2b)^\frac{1}{\epsilon} \frac{\mu K^{(1+\gamma (1-\alpha-\beta)(\epsilon-1))}}{A^{\alpha \beta} \beta (1-\gamma)^{1-\gamma}} \left[L \cdot \frac{\gamma (1-\alpha-\beta) + \alpha \mu}{(1-\gamma)(1-\alpha-\beta) + \beta \mu} \right]^{(\epsilon-1)[\gamma \beta (1-\gamma) + 1] - \epsilon} p_n, \]

\[p_d = (2b)^\frac{1}{\epsilon} \frac{\mu}{A^{\alpha \beta} \beta (1-\gamma)^{1-\gamma}} \left[L \cdot \frac{\gamma (1-\alpha-\beta) + \alpha \mu}{(1-\gamma)(1-\alpha-\beta) + \beta \mu} \right]^{(\epsilon-1)[\gamma \beta (1-\gamma) + 1] - \epsilon} p_n. \]
\[
D_d = D_d^* = \frac{(2b)^{-1} K^{\alpha + \gamma (1 - \alpha - \beta)} \left[L \cdot \frac{\gamma (1 - \alpha - \beta) + \alpha \mu}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} \right]^{(1 - \gamma)(1 - \alpha - \beta) + \beta}}{A_{\alpha}^{\mu \gamma (1 - \alpha - \beta) + \alpha \mu} (1 - \gamma)^{1 - \gamma}}
\]

\[
D_m = (b)^{-1} K^{\gamma} \left[L \cdot \frac{\gamma (1 - \alpha - \beta) + \alpha \mu}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} \right]^{(1 - \gamma)} A_m^{\gamma} \frac{(1 - \gamma)^{1 - \gamma} (1 - \alpha - \beta)}{\alpha \beta \lambda (1 - \alpha - \beta)^{1 - \alpha - \beta}}
\]

\[
\Pi_m = D_m \frac{\mu - 1}{\mu} p_m
\]

\[
GDP = WL + RK + \Pi_m
\]

\[
= \left[\frac{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu}{\gamma(1 - \alpha - \beta) + \alpha \mu} + 1 + \frac{\mu - 1}{\mu} (b)^{-1} \left(\frac{\mu}{A_m^{\gamma (1 - \gamma)^{1 - \gamma}}} \right)^{1 - \alpha - \beta} \right]
\]

\[
\cdot K^{\frac{\alpha (\epsilon - 1) + \gamma (1 - \alpha - \beta) (\epsilon - 1)}{\epsilon}} \left[L \cdot \frac{\gamma (1 - \alpha - \beta) + \alpha \mu}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} \right]^{(\epsilon - 1)(\gamma \beta + (1 - \alpha)(1 - \gamma))}
\]

which proves (34), where

\[
B \equiv \left[\frac{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu}{\gamma(1 - \alpha - \beta) + \alpha \mu} + 1 + \frac{\mu - 1}{\mu} (1 - \alpha - \beta) \right] \left(\frac{\gamma(1 - \alpha - \beta) + \alpha \mu}{(1 - \gamma)(1 - \alpha - \beta) + \beta \mu} \right)^{\frac{\epsilon - 1)(\gamma \beta + (1 - \alpha)(1 - \gamma))}{\epsilon} \left(2\omega \right)^{-\frac{1}{2}}
\]

(33) can be easily obtained by using (34) and (43). To ensure positive consumption of good n in country H, we require \(GDP > D_d p_d \), which is true if and only if

\[
\frac{(1 - \alpha - \beta) + (\beta + \alpha) \mu}{\gamma(1 - \alpha - \beta) + \alpha \mu} > (\omega)^{-1} \left(\frac{\gamma^{\frac{\mu}{\gamma (1 - \gamma)^{1 - \gamma}}} \left(1 - \alpha - \beta \right)}{\alpha \beta \lambda (1 - \alpha - \beta)^{1 - \alpha - \beta}} \right)^{1 - \epsilon} \left[\frac{1 - \mu - 1}{\mu} (1 - \alpha - \beta) \right].
\]
The above equation must always hold whenever (27) holds because \(\frac{1}{2} - \frac{k-1}{\mu} (1 - \alpha - \beta) \leq 0 \). To ensure country F also consumes good n, we must require \(W^*L^* > D_d p_d \), which is reduced to (32).

To ensure that country H does not produce good n, we must require \(p_n < W \), which is equivalent to \(L < \frac{1}{L}(A, A_m, K) \). Note that for simplicity we ignore the effect of the domestic income inequality in country H by assuming that the wealth is redistributed in a lump-sum fashion among the agents in country H such that everyone ends up with identical wealth (and consumption). To ensure country F does not produce d, we must require \(W^* > p_d \), or equivalently

\[
A^* > (2\pi)^{\frac{1}{2}} \left[A_m^{(1-\alpha-\beta)} A \right]^{\frac{1}{\tau}} L \left[\frac{\gamma^{\frac{1-\alpha-\beta}{\tau}}}{\alpha^\mu \beta^\gamma (1-\alpha-\beta)^{1-\alpha-\beta}} K^{\frac{[\alpha + \gamma(1-\alpha-\beta)]}{\epsilon}} \right]^{\frac{1}{1+\gamma}} \left[L \cdot \frac{(1-\gamma)(1-\alpha-\beta)+\alpha\mu}{(1-\gamma)(1-\alpha-\beta)+\beta\mu} \right]^{\frac{1}{\epsilon}}.
\]

5. Proof of Proposition 5

Consider any industry \(j \) that is monopolized by an SOE. This firm faces the following demand function \(D(j) = \left(\frac{p_n}{P} \right)^{\epsilon} \left[\frac{p(j)}{P} \right]^{-\eta} \), where \(p(i) \) denotes the market price of good \(i \in [0, 1] \) and the price index \(P \) is defined as \(P \equiv \left(\int_0^1 p(i)^{1-\eta} di \right)^{\frac{1}{1-\eta}} \). The aggregate price \(P \) and \(p_n \) are taken as given by the SOE, so it would choose \(p(j) = \frac{\eta}{\eta-1} \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{A_s^\alpha \beta^\gamma (1-\alpha-\beta)^{1-\alpha-\beta}} \). On the other hand, \(p(j') = \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{A_s^\alpha \beta^\gamma (1-\alpha-\beta)^{1-\alpha-\beta}} \) for any liberalized industry \(j' \), so the aggregate price level

\[
P = \left(\int_0^1 p(i)^{1-\eta} di \right)^{\frac{1}{1-\eta}} = \left(1 - \phi \right) \left[\frac{\eta}{\eta-1} \frac{1}{A_s} \right]^{1-\eta} + \phi \left[\frac{1}{A_p} \right]^{1-\eta} \left(\frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\gamma (1-\alpha-\beta)^{1-\alpha-\beta}} \right)^{\frac{1}{1-\eta}}.
\]

The induced demand for the intermediate good from the SOE monopolist in industry \(j \) is \(D(j) \left(\frac{1-\alpha-\beta}{p_m} \right) \frac{p(j)}{\eta-1} \).

The total demand for the intermediate good is

\[
\phi \left(\frac{1-\alpha-\beta}{p_m} \right) p(j') \left(\frac{p_n}{P} \right)^{\epsilon} \left[\frac{p(j')}{P} \right]^{-\eta} + (1 - \phi) \left(\frac{p_n}{P} \right)^{\epsilon} \left[\frac{p(j)}{P} \right]^{-\eta} \left(\frac{(1-\alpha-\beta)}{p_m} \frac{p(j)}{\eta-1} \right) \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\gamma (1-\alpha-\beta)^{1-\alpha-\beta}} \left[\left(1 - \phi \right) \left[\frac{\eta}{\eta-1} \frac{1}{A_s} \right]^{1-\eta} + \phi \left[\frac{1}{A_p} \right]^{1-\eta} \right]^{\frac{1}{1-\eta}}.
\]

52
so the total profit of the upstream SOE is

\[p_n^e \frac{\mu - 1}{\mu} (1 - \alpha - \beta) \frac{\phi \left(\frac{1}{A_p} \right)^{1-\eta} + (1 - \phi) \left(\frac{n}{\eta-1} \right)^{1-\eta}}{(1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{1-\eta} + \phi \left(\frac{1}{A_p} \right)^{1-\eta}} \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}}^{1-\epsilon}, \]

and the total revenue of the upstream SOE is

\[p_n^e (1 - \alpha - \beta) \frac{\phi \left(\frac{1}{A_p} \right)^{1-\eta} + (1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{1-\eta}}{(1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{1-\eta} + \phi \left(\frac{1}{A_p} \right)^{1-\eta}} \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}}^{1-\epsilon}. \]

The total downstream SOE profit is

\[(1 - \phi) \left(\frac{p_n}{P} \right)^\epsilon \left[\frac{p(j)}{P} \right]^{-\eta} \left(\frac{n}{\eta-1} - 1 \right) \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}} = p_n^e \frac{(1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{1-\eta} \left(\frac{1}{A_s} \right)^{1-\eta}}{(1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{1-\eta} + \phi \left(\frac{1}{A_p} \right)^{1-\eta}} \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}}^{1-\epsilon}, \]

and the total downstream SOE revenue is

\[\eta p_n^e \frac{(1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{-\eta} \left(\frac{1}{A_s} \right)^{-\eta}}{(1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{-\eta} + \phi \left(\frac{1}{A_p} \right)^{-\eta}} \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}}^{1-\epsilon}. \]

Therefore, the aggregate profit of SOE is

\[\frac{\phi \left(\frac{1}{A_p} \right)^{1-\eta} + (1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{1-\eta}}{(1 - \phi) \left(\frac{n}{\eta-1} \frac{1}{A_s} \right)^{1-\eta} + \phi \left(\frac{1}{A_p} \right)^{1-\eta}} \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta}}{\alpha^\alpha \beta^\beta (1 - \alpha - \beta)^{1-\alpha-\beta}}^{1-\epsilon}, \]

which is maximized when \(\phi = 1 \) if \(\frac{A_p}{A_s} > \left(\frac{n-1}{\eta} \right) \left[\frac{n-1}{\eta} + \frac{\mu}{\eta(\mu-1)(1-\alpha-\beta)} \right]^{\eta-1} \) given all the factor prices \((R \ and \ W) \) and optimal price choice of upstream intermediate input \(p_m \).
6. Proof for $\omega'(\phi) > 0$ in equation (36)

For given liberalization fraction ϕ, the total sales revenues of SOEs (including both upstream and downstream) is

$$p_n^\phi (1-\alpha-\beta) \frac{\phi \left(\frac{1}{\lambda p} \right)^{1-\eta} + (1 - \phi) \left[\frac{1}{\lambda s} \right]^{1-\eta} \left(\frac{\eta}{\eta - 1} \right)^{-\eta}}{\left(1 - \phi \right) \left[\frac{\eta}{\eta - 1} \frac{1}{\lambda s} \right]^{1-\eta} + \phi \left[\frac{1}{\lambda p} \right]^{1-\eta}}$$

Therefore, total SOE profits divided by total SOE revenues is given by

$$\frac{\mu - 1}{\mu} \frac{(1-\alpha-\beta) \left[\phi \left(\frac{1}{\lambda p} \right)^{1-\eta} + (1 - \phi) \left[\frac{1}{\lambda s} \right]^{1-\eta} \left(\frac{\eta}{\eta - 1} \right)^{-\eta}}{\left(1 - \phi \right) \left[\frac{\eta}{\eta - 1} \frac{1}{\lambda s} \right]^{1-\eta} + \phi \left[\frac{1}{\lambda p} \right]^{1-\eta}} + \eta p_n^\phi \frac{R^\alpha W^\beta p_m^{1-\alpha-\beta} \left[\frac{\eta}{\eta - 1} \frac{1}{\lambda s} \right]^{1-\eta} + \phi \left[\frac{1}{\lambda p} \right]^{1-\eta}}{\left(1 - \phi \right) \left[\frac{\eta}{\eta - 1} \frac{1}{\lambda s} \right]^{1-\eta} + \phi \left[\frac{1}{\lambda p} \right]^{1-\eta}}\right)^{1-\epsilon} \left(1 \right)^{1-\eta} \left(1 \right)^{1-\eta}$$

which strictly increases with ϕ when $\frac{\mu - 1}{\mu} > \frac{1}{\eta}$.

7. Proof for Proposition 6

It is straightforward to obtain $p_d = \left[\left(\frac{w}{A} \right)^{1-\rho} + p_m^{1-\rho} \right] \frac{1}{\epsilon}$, where wage $w = A_n$. Good n is still used as the numeraire. Using $D_d = \left(\frac{p_n}{p_d} \right)^{\epsilon}$ and Shepherd’s Lemma, we can write down the monopolist upstream SOE’s optimization problem as follows:

$$\max_{p_m} \left[p_m - \frac{w}{A_m} \right] \left(\frac{p_n}{p_d} \right)^{\epsilon} \left[\left(\frac{w}{A} \right)^{1-\rho} + p_m^{1-\rho} \right] \frac{1}{\epsilon - 1}$$

FOC:

$$\left[1 - \rho \left(1 - \frac{w}{A_m p_m} \right) \right] \left(\frac{w}{A_m} \right)^{1-\rho} + 1 = 0$$

54
Define upstream markup as $\mu \equiv \frac{p_m}{\frac{w}{A_m}}$, the above equation can be rewritten as

$$
\left[1 - \rho + \frac{1}{\mu} \right] \left[\left(\frac{A_m}{A} \right)^{1-\rho} + 1 \right] + (\rho - \epsilon) \left[1 - \frac{1}{\mu} \right] = 0.
$$

(46)

Using the Implicit Function Theorem, we have

$$
\frac{d\frac{1}{\mu}}{d\frac{A_m}{A}} = \frac{- (1 - \rho) \left[1 - \rho \left(1 - \frac{1}{\mu} \right) \right] \left(\frac{A_m}{A} \right)^{-\rho} \frac{1}{\mu}}{\left(1 - \rho \right)^2 \mu + (2 - \rho) \rho \left(\frac{A_m}{A} \right)^{1-\rho} + \epsilon}.
$$

(47)

Observe that the denominator is always strictly larger than zero for any $\rho \geq 0$ and $\mu \geq 1$. Also, $\text{sign}(- \frac{d\frac{1}{\mu}}{d\frac{A_m}{A}}) = \text{sign}(\frac{d\frac{1}{\mu}}{d\frac{A_m}{A}})$. When $0 \leq \rho < 1$, then the numerator of (47) is strictly negative, so $\frac{d\frac{1}{\mu}}{d\frac{A_m}{A}} < 0$. When $\rho = 1$ (back to the C-D case), $\frac{d\frac{1}{\mu}}{d\frac{A_m}{A}} = 0$ based on (47). When $\rho = \epsilon$, (46) holds if and only if $\mu = \frac{\epsilon}{\epsilon - 1}$, and therefore $\frac{d\frac{1}{\mu}}{d\frac{A_m}{A}} = 0$. When $\epsilon < \rho < \infty$, then the second term on the left hand side of (46) must be strictly positive, so $\left[1 - \rho + \rho \frac{1}{\mu} \right]$ must be strictly negative. In that case, when $\frac{A_m}{A}$ increases, $\frac{1}{\mu}$ must decrease to keep (46) valid, thus $\frac{d\frac{1}{\mu}}{d\frac{A_m}{A}} < 0$. When $1 < \rho < \epsilon$, the second term on the left hand side of equation (46) must be strictly negative, so $\left[1 - \rho + \rho \frac{1}{\mu} \right]$ must be strictly positive. So the numerator of (47) is larger than zero; then $\frac{d\frac{1}{\mu}}{d\frac{A_m}{A}} > 0$.

When $\rho = \infty$, (37) degenerates to the linear form as follows: $F_d(l, m) = A \cdot l + m$, which means that the downstream demand for m is positive iff $\frac{p_m}{w} \leq \frac{1}{A}$, in which case $p_d = p_m$. The monopolist upstream SOE’s optimization problem as follows:

$$
\max_{p_m, \in [\frac{w}{A_m}, \frac{w}{A}]} \left[p_m - \frac{w}{A_m} \right] \left(\frac{P_n}{P_m} \right)^{\epsilon},
$$

which yields $p_m = \min \{ \frac{\epsilon}{\epsilon - 1} \frac{w}{A_m}, \frac{w}{A} \}$. The markup is therefore given by $\mu = \frac{p_m}{\frac{A_m}{w}} = \min \{ \frac{\epsilon}{\epsilon - 1}, \frac{A_m}{A} \}$, while at the same time, μ must be no smaller than one. More explicitly,

$$
\mu = \frac{\epsilon}{\epsilon - 1} \quad \text{when} \quad \frac{\epsilon}{\epsilon - 1} \leq \frac{A_m}{A},
$$

$$
\mu = \frac{A_m}{A} \quad \text{when} \quad 1 \leq \frac{A_m}{A} < \frac{\epsilon}{\epsilon - 1}. \quad \text{(48)}
$$

When $\frac{A_m}{A} < 1$, downstream demand for good m will be zero, so good m is not produced and the
markup for m is not well defined. Proposition 6 is a summary of all the above different cases.

8. Capital Intensity and Profitability

This is to show that, if a firm has market power in the output market, then for any given positive markup for the output price, a higher capital intensity automatically implies a lower ROA (return on assets) when the factor markets are perfect. In other words, a low ROA itself does not necessarily imply low profitability (equivalent to low mark up) or capital market imperfection.

More precisely, suppose the production function of a firm is $Y = AK^\alpha L^{1-\alpha}$, and suppose both capital and labor markets are perfect with exogenous rental price R and wage rate W. Let P denote the output price, which could include the markup if this firm has certain monopoly power. The accounting profit (denoted by Π_1) reported in the data for this firm is $\Pi_1 = PY - WL$, whereas the economic profit according to theory (denoted by Π_2) for this firm is $\Pi_2 = PY - WL - RK$.

Claim: $\frac{\Pi_1}{K} = R[\frac{\mu-1}{\alpha} + 1]$; $\frac{\Pi_2}{K} = \frac{\mu-1}{\alpha} R$.

Proof. Note that the first-order conditions for labor and capital jointly imply $k = \frac{K}{L} = \frac{W}{R} \frac{\alpha}{(1-\alpha)}$, and final good price P is markup μ multiplied by marginal cost: $P = \mu \frac{R^\alpha W^{1-\alpha}}{A\alpha^{\alpha(1-\alpha)}(1-\alpha)}$, where $\mu \geq 1$.

Thus

$$\frac{\Pi_1}{K} = \frac{PY}{K} - \frac{WL}{K} = PAk^{\alpha-1} - \frac{R(1-\alpha)}{\alpha}$$
$$= PA \left[\frac{W}{R} \frac{\alpha}{(1-\alpha)} \right]^{\alpha-1} - \frac{R(1-\alpha)}{\alpha}$$
$$= \frac{\mu}{A\alpha^{\alpha(1-\alpha)}(1-\alpha)} \cdot \frac{R^{\alpha} W^{1-\alpha}}{A} \left[\frac{W}{R} \frac{\alpha}{(1-\alpha)} \right]^{\alpha-1} - \frac{R(1-\alpha)}{\alpha}$$
$$= R \left(\frac{\mu - 1}{\alpha} + 1 \right).$$

Thus $\frac{\Pi_2}{K} = \frac{\Pi_1}{K} - R = \frac{\mu - 1}{\alpha} R$.

So we have that both $\frac{\Pi_1}{K}$ and $\frac{\Pi_2}{K}$ strictly decrease with α whenever $\mu > 1$ (the firm has market power). In other words, a higher capital intensity (larger α) would automatically imply a lower $\frac{\Pi_1}{K}$ when $\mu > 1$.

56
Figure 1: Total profit to sales revenues of Chinese enterprises in the industrial sector. We use CEIC (Table CN.BF: Industrial Financial Data: By Enterprise Type) to obtain Total profit to Sales Revenue. In this table, CEIC categorizes industrial enterprises into: state owned & holding, private, HMT & foreign, collective owned, shareholding corporations, foreign funded, and Hong Kong, Macau & Taiwan funded. We divide all the industrial enterprises into state owned & holding and the rest.
Figures 2a and 2b report respectively the total profit of industrial enterprises divided by the number of enterprises and the number of employees. They report separately for three types of enterprises according to ownership structure. The data are from CEIC.

Figure 2: Profit by enterprises of different ownership structure for the industrial sector. Figures 2a and 2b report respectively the total profit of industrial enterprises divided by the number of enterprises and the number of employees. They report separately for three types of enterprises according to ownership structure. The data are from CEIC.
Figure 3: Share of output value from state enterprises in the industrial sector. The criterion that we use to break down the share of the state enterprises’ gross industrial output value (GIOV) is profit margin from 1995-2009. Related data are from CEIC (Table CN.OE03 and 04). The low profit margin subsectors are those with less than or equal to 5% profit margin, which include subsectors such as textiles and agriculture. The high profit subsectors are those with greater than 10% profit margin, which include subsectors such as petrochemical, tobacco, and pharmaceuticals. In Figure 3a, the vertical axis is GIOV of the state enterprises as a percentage of total GIOV. GIOV of all enterprises is from CEIC (Table CN.BD03: Gross Industrial Output: By Industry). GIOV of the state enterprises is from National Bureau of Statistics (NBS) Yearbook because CEIC does not have this data. Also, GIOV of the state enterprises is missing from NBS yearbook for years 1998, 2002, and 2004. Note also that in the table “Main Indicators by Industrial Sector of State portion”, NBS has changed the definition of the state enterprises back and forth. NBS uses “state-owned industrial enterprises” in 1995-1997; “state-owned and state holding industrial enterprises” in 1999-2003 and 2005-2008.In Figure 3b, we report the share of state enterprises as a percentage of its 1995 value.
Figure 4: Total profit to sales revenues of Chinese enterprises in the industrial sector. We use NBS industrial enterprises data to obtain Total Profit to Sales Revenue and divide all the industrial enterprises into state owned & holding and the rest.
Figure 5a: Share of state enterprises in value-added for the industrial sector.

Figure 5b: Share of state enterprises in value-added as a percentage of its 1995 value for the industrial sector.
Figure 5c. Shares of different firms in the industrial sector in 1998

Figure 5d. Shares of different firms in the industrial sector in 2007

Figure 5e. Average shares of different firms in the industrial sector in 1998-2007

Figure 6a: SOE share of investment in fixed assets from aggregate data for all sectors, 2004-2009

Figure 6b: SOE share of various variables from NBS enterprise level data for all sectors, 2008

Figure 6: SOE share of all sectors: Figure 6a reports the investments in fixed assets in urban areas by ownership for all sectors using data from the following tables of National Bureau of Statistics (NBS) of China: Investment in Urban Area by Sector, Source of Funds, Jurisdiction of Management and Registration Status. Note that NBS has changed the column title of state related ownership over time. NBS uses “state-owned and state-controlled” in Tables 6-14 of 2004; “state-owned and state-holding” in Tables 6-14 of 2005; “state-holding” in Tables 6-14 of 2006; and “state-holding” in Tables 5-14 of 2007-2008. Before year 2004, data for the state enterprises are not available. Figure 6b reports for various variables using NBS enterprise level all sector data available for 2008.
Table 1. Comparison of Fortune Global 500 Firms in 2011 from China, U.S., and France

<table>
<thead>
<tr>
<th>Country</th>
<th>Total #</th>
<th>SOE #</th>
<th>SOE %</th>
<th>Upstream #</th>
<th>Upstream %</th>
<th>Downstream #</th>
<th>Downstream %</th>
<th>Misc. Number</th>
<th>Misc. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>57</td>
<td>53</td>
<td>93</td>
<td>25</td>
<td>46</td>
<td>11</td>
<td>20</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>US</td>
<td>133</td>
<td>4</td>
<td>3</td>
<td>17</td>
<td>14</td>
<td>64</td>
<td>51</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>France</td>
<td>35</td>
<td>4</td>
<td>11</td>
<td>3</td>
<td>9</td>
<td>16</td>
<td>46</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The classification criterion for SOEs and Non-SOEs is whether the government owns at least 50% of the firm. The upstream classification of industries is according to Table A2 which is based on the scores computed with Chinese input-output table following the methodology of Antras et al. (2012). Misc. refers to those companies whose industries are miscellaneous such as aerospace or defense, which cannot be classified into any stream based on the IO table.
Table 2: Performance of SOEs in Upstream Industries

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profit</td>
<td>Revenue</td>
<td>ROFA</td>
<td>Turnover</td>
<td>Profit Margin</td>
<td>Profit/Employee</td>
</tr>
<tr>
<td>UpSoeTFP<sub>j,t</sub></td>
<td>0.051</td>
<td>-0.001</td>
<td>0.004</td>
<td>-0.010</td>
<td>0.051</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>(1.46)</td>
<td>(-0.04)</td>
<td>(0.11)</td>
<td>(-0.43)</td>
<td>(1.28)</td>
<td>(1.34)</td>
</tr>
<tr>
<td>UpPoeTFP<sub>j,t</sub></td>
<td>-0.047***</td>
<td>-0.021***</td>
<td>-0.016*</td>
<td>-0.025***</td>
<td>-0.056***</td>
<td>-0.043***</td>
</tr>
<tr>
<td></td>
<td>(-2.06)</td>
<td>(-3.84)</td>
<td>(-1.83)</td>
<td>(-2.99)</td>
<td>(-2.65)</td>
<td>(-2.14)</td>
</tr>
<tr>
<td>DownSoeTFP<sub>j,t</sub></td>
<td>-0.036</td>
<td>-0.023***</td>
<td>-0.030*</td>
<td>-0.068***</td>
<td>-0.037</td>
<td>-0.032</td>
</tr>
<tr>
<td></td>
<td>(-1.72)</td>
<td>(-3.19)</td>
<td>(-1.91)</td>
<td>(-4.21)</td>
<td>(-1.46)</td>
<td>(-1.45)</td>
</tr>
<tr>
<td>DownPoeTFP<sub>j,t</sub></td>
<td>0.111***</td>
<td>0.047***</td>
<td>0.053*</td>
<td>0.062**</td>
<td>0.104***</td>
<td>0.097***</td>
</tr>
<tr>
<td></td>
<td>(3.40)</td>
<td>(2.75)</td>
<td>(1.89)</td>
<td>(2.32)</td>
<td>(2.83)</td>
<td>(3.46)</td>
</tr>
<tr>
<td>Log (Total Assets<sub>i,t</sub>)</td>
<td>0.199**</td>
<td>0.456***</td>
<td>0.010</td>
<td>-0.123</td>
<td>0.129***</td>
<td>0.189***</td>
</tr>
<tr>
<td></td>
<td>(3.11)</td>
<td>(15.95)</td>
<td>(0.19)</td>
<td>(-1.47)</td>
<td>(3.30)</td>
<td>(2.92)</td>
</tr>
<tr>
<td>DownTradeShare<sub>j,t</sub></td>
<td>0.074**</td>
<td>0.038*</td>
<td>0.027</td>
<td>0.029</td>
<td>0.095**</td>
<td>0.061*</td>
</tr>
<tr>
<td></td>
<td>(2.06)</td>
<td>(1.88)</td>
<td>(1.00)</td>
<td>(0.89)</td>
<td>(2.55)</td>
<td>(1.92)</td>
</tr>
<tr>
<td>HHI<sub>j,t</sub></td>
<td>-0.091***</td>
<td>0.007</td>
<td>-0.069***</td>
<td>-0.004</td>
<td>-0.118***</td>
<td>-0.098***</td>
</tr>
<tr>
<td></td>
<td>(-3.67)</td>
<td>(0.44)</td>
<td>(-3.13)</td>
<td>(-0.10)</td>
<td>(-4.17)</td>
<td>(-3.05)</td>
</tr>
<tr>
<td>TFP<sub>j,t</sub></td>
<td>0.146***</td>
<td>0.093***</td>
<td>0.098***</td>
<td>0.108***</td>
<td>0.157***</td>
<td>0.158***</td>
</tr>
<tr>
<td></td>
<td>(9.25)</td>
<td>(3.87)</td>
<td>(4.79)</td>
<td>(3.65)</td>
<td>(12.92)</td>
<td>(10.44)</td>
</tr>
<tr>
<td>Capital Intensity<sub>j,t</sub></td>
<td>-0.303**</td>
<td>-0.151***</td>
<td>-0.159</td>
<td>-0.230**</td>
<td>-0.315**</td>
<td>-0.260**</td>
</tr>
<tr>
<td></td>
<td>(-2.40)</td>
<td>(-2.92)</td>
<td>(-1.56)</td>
<td>(-2.19)</td>
<td>(-2.15)</td>
<td>(-2.49)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.508***</td>
<td>0.355***</td>
<td>0.611***</td>
<td>0.717***</td>
<td>0.546***</td>
<td>0.502***</td>
</tr>
<tr>
<td></td>
<td>(6.83)</td>
<td>(11.19)</td>
<td>(9.68)</td>
<td>(10.67)</td>
<td>(8.21)</td>
<td>(6.58)</td>
</tr>
<tr>
<td>N</td>
<td>102,106</td>
<td>102,106</td>
<td>101,730</td>
<td>101,730</td>
<td>102,106</td>
<td>101,902</td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>0.04</td>
<td>0.28</td>
<td>0.011</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

We use the Chinese industrial enterprise data provided by NBS (1998-2007). Industries in the top (bottom) terciles according to the upstreamness index constructed with China's input-output table (1995, 1997, 2002, 2007) following the methodology of Antras et al. (2012) are upstream (downstream). The dependent variable is one of the six performance measures: Profit, revenue, return on fixed assets, asset turnover (revenue/total assets), profit margin (profit divided by revenue), and profit/employee. We control for year and enterprise fixed effects in all the regressions. Robust t-statistics clustered by industry and by year are reported in parentheses. ***, **, * indicate significance at the 1%, 5% and 10% levels (two-tailed), respectively.
Figure A1a: Average profit per industrial enterprise for 1998-2007 (Million RMB)

Figure A1b: Average profit per employee for 1998-2007 (000 RMB)

Figure A1c: Average total revenue for 1998-2007 (Million RMB)

Figure A1: Industrial profit by enterprises of different ownership structure for the industrial sector. Figures A1a-A1c report respectively the total profit of industrial enterprises divided by the number of enterprises, the total profit divided by the number of employees, and the total revenue divided by the number of enterprises. The data are from CEIC.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Fortune Rank</th>
<th>Fortune Revenues ($millions)</th>
<th>Headquarters</th>
<th>Industry</th>
<th>SOE</th>
<th>Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopce Group</td>
<td>5</td>
<td>273422</td>
<td>Beijing</td>
<td>Oil and Refinery</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China National Petroleum</td>
<td>6</td>
<td>240192</td>
<td>Beijing</td>
<td>Oil and Refinery</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>State Grid</td>
<td>7</td>
<td>226294</td>
<td>Beijing</td>
<td>Electricity Power</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Industrial & Commercial Bank of China</td>
<td>77</td>
<td>80501</td>
<td>Beijing</td>
<td>Banking</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Mobile Communications</td>
<td>87</td>
<td>76673</td>
<td>Beijing</td>
<td>Telecom</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China Railway Group</td>
<td>95</td>
<td>69973</td>
<td>Beijing</td>
<td>Construction and Infrastructure</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Railway Construction</td>
<td>105</td>
<td>67414</td>
<td>Beijing</td>
<td>Construction and Infrastructure</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China Construction Bank</td>
<td>108</td>
<td>67081</td>
<td>Beijing</td>
<td>Banking</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Life Insurance</td>
<td>113</td>
<td>64635</td>
<td>Beijing</td>
<td>Insurance</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>Agricultural Bank of China</td>
<td>127</td>
<td>60536</td>
<td>Beijing</td>
<td>Banking</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>Bank of China</td>
<td>132</td>
<td>59212</td>
<td>Beijing</td>
<td>Banking</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>Dongfeng Motor</td>
<td>145</td>
<td>55748</td>
<td>Wuhan</td>
<td>Automobile</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China State Construction Engineering</td>
<td>147</td>
<td>54721</td>
<td>Beijing</td>
<td>Construction and Infrastructure</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China Southern Power Grid</td>
<td>149</td>
<td>54449</td>
<td>Guangzhou</td>
<td>Electricity Power</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Shanghai Automotive</td>
<td>151</td>
<td>54257</td>
<td>Shanghai</td>
<td>Automobile</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China National Offshore Oil</td>
<td>162</td>
<td>52408</td>
<td>Beijing</td>
<td>Oil and Refinery</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Sinochem Group</td>
<td>168</td>
<td>49537</td>
<td>Beijing</td>
<td>Material: Chemical</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China FAW Group</td>
<td>197</td>
<td>43434</td>
<td>Changchun</td>
<td>Automobile</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China Communications Construction</td>
<td>211</td>
<td>40414</td>
<td>Beijing</td>
<td>Construction and Infrastructure</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>Baosteel Group</td>
<td>212</td>
<td>40327</td>
<td>Shanghai</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>CITIC Group</td>
<td>221</td>
<td>38985</td>
<td>Beijing</td>
<td>Financial</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Telecommunications</td>
<td>222</td>
<td>38469</td>
<td>Beijing</td>
<td>Telecom</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China South Industries Group</td>
<td>227</td>
<td>37996</td>
<td>Beijing</td>
<td>Defense</td>
<td>X</td>
<td>Misc</td>
</tr>
<tr>
<td>China Minmetals</td>
<td>229</td>
<td>37555</td>
<td>Beijing</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China North Industries Group</td>
<td>250</td>
<td>35629</td>
<td>Beijing</td>
<td>Defense</td>
<td>X</td>
<td>Misc</td>
</tr>
<tr>
<td>China Huangeng Group</td>
<td>276</td>
<td>33681</td>
<td>Beijing</td>
<td>Electricity Power</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>HeBei Iron & Steel Group</td>
<td>279</td>
<td>33549</td>
<td>Shijiazhuang</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>People's Insurance Co. of China</td>
<td>289</td>
<td>32579</td>
<td>Beijing</td>
<td>Insurance</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>Shenhua Group</td>
<td>293</td>
<td>32446</td>
<td>Beijing</td>
<td>Energy</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China Metallurgical Group</td>
<td>297</td>
<td>32076</td>
<td>Beijing</td>
<td>Construction and Infrastructure</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Aviation Industry Corp. of China</td>
<td>311</td>
<td>31006</td>
<td>Beijing</td>
<td>Aerospace</td>
<td>X</td>
<td>Misc</td>
</tr>
<tr>
<td>Shougang Group</td>
<td>326</td>
<td>29181</td>
<td>Beijing</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Ping An Insurance</td>
<td>328</td>
<td>28927</td>
<td>Shenzhen</td>
<td>Insurance</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>Aluminum Corp. of China</td>
<td>331</td>
<td>28871</td>
<td>Beijing</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Wuhan Iron & Steel</td>
<td>341</td>
<td>28170</td>
<td>Wuhan</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China Post Group</td>
<td>343</td>
<td>28094</td>
<td>Beijing</td>
<td>Postal</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>Huawei Technologies</td>
<td>352</td>
<td>27356</td>
<td>Shenzhen</td>
<td>Telecom Equipment</td>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>Sinosteel</td>
<td>354</td>
<td>27266</td>
<td>Beijing</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>COFCO</td>
<td>366</td>
<td>26469</td>
<td>Beijing</td>
<td>Agriculture Trading and Processing</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>Jiangsu Shagang Group</td>
<td>367</td>
<td>26388</td>
<td>Zhangjiagang</td>
<td>Material: Metal</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>China United Network Communications</td>
<td>371</td>
<td>26025</td>
<td>Shanghai</td>
<td>Telecom</td>
<td>X</td>
<td>Down</td>
</tr>
<tr>
<td>China Datang</td>
<td>375</td>
<td>25915</td>
<td>Beijing</td>
<td>Electricity Power</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Bank of Communications</td>
<td>398</td>
<td>24264</td>
<td>Shanghai</td>
<td>Banking</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Ocean Shipping</td>
<td>399</td>
<td>24250</td>
<td>Beijing</td>
<td>Shipping</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Guodian</td>
<td>405</td>
<td>24016</td>
<td>Beijing</td>
<td>Electricity Power</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China Electronics</td>
<td>408</td>
<td>23761</td>
<td>Beijing</td>
<td>Electronics</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Railway Materials Commercial</td>
<td>430</td>
<td>22631</td>
<td>Beijing</td>
<td>Material: Railway</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China National Aviation Fuel Group</td>
<td>431</td>
<td>22630</td>
<td>Beijing</td>
<td>Oil and Refinery</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Sinomach</td>
<td>435</td>
<td>22487</td>
<td>Beijing</td>
<td>Machinery</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>Henan Coal & Chemical</td>
<td>446</td>
<td>21715</td>
<td>Zhengzhou</td>
<td>Energy</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Lenovo Group</td>
<td>450</td>
<td>21594</td>
<td>Beijing</td>
<td>Computer</td>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>Jizhong Energy Group</td>
<td>458</td>
<td>21255</td>
<td>Xingtai</td>
<td>Energy</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China Shipbuilding Industry</td>
<td>463</td>
<td>21055</td>
<td>Beijing</td>
<td>Ship Building</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>China Pacific Insurance (Group)</td>
<td>467</td>
<td>20878</td>
<td>Shanghai</td>
<td>Insurance</td>
<td>X</td>
<td>Mid</td>
</tr>
<tr>
<td>ChemChina</td>
<td>475</td>
<td>20715</td>
<td>Beijing</td>
<td>Material: Chemical</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>Zhejiang Materials Industry Group</td>
<td>484</td>
<td>20001</td>
<td>Hangzhou</td>
<td>Material: Metal</td>
<td>X</td>
<td>Up</td>
</tr>
<tr>
<td>China National Building Material Group</td>
<td>485</td>
<td>19996</td>
<td>Hangzhou</td>
<td>Material: Construction</td>
<td>X</td>
<td>Mid</td>
</tr>
</tbody>
</table>
Table A1. Stream Classification for Industrial Sectors

<table>
<thead>
<tr>
<th>Ind #</th>
<th>Industries</th>
<th>2007 Stream Score</th>
<th>Profit Margin</th>
<th>Export Exposure</th>
<th>Herfindahl-Hirschman Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coal</td>
<td>5.64</td>
<td>0.0613</td>
<td>0.0175</td>
<td>0.0096</td>
</tr>
<tr>
<td>2</td>
<td>Petroleum and Natural Gas</td>
<td>5.83</td>
<td>0.1589</td>
<td>0.0103</td>
<td>0.1016</td>
</tr>
<tr>
<td>3</td>
<td>Ferrous Metal Ores</td>
<td>5.60</td>
<td>0.0733</td>
<td>0.0086</td>
<td>0.0065</td>
</tr>
<tr>
<td>4</td>
<td>Non-Ferrous Metal Ores</td>
<td>5.60</td>
<td>0.0654</td>
<td>0.0092</td>
<td>0.0081</td>
</tr>
<tr>
<td>6</td>
<td>Other Ores</td>
<td>4.23</td>
<td>0.0296</td>
<td>0.0077</td>
<td>0.2250</td>
</tr>
<tr>
<td>17</td>
<td>Paper and Paper Products</td>
<td>4.42</td>
<td>0.0207</td>
<td>0.0386</td>
<td>0.0031</td>
</tr>
<tr>
<td>20</td>
<td>Petroleum, Nuclear fuel</td>
<td>4.91</td>
<td>0.0228</td>
<td>0.0072</td>
<td>0.0200</td>
</tr>
<tr>
<td>21</td>
<td>Raw chemical materials</td>
<td>4.71</td>
<td>0.0251</td>
<td>0.0979</td>
<td>0.0024</td>
</tr>
<tr>
<td>27</td>
<td>Smelting Ferrous Metals</td>
<td>4.58</td>
<td>0.009</td>
<td>0.048</td>
<td>0.0099</td>
</tr>
<tr>
<td>28</td>
<td>Smelting and Pressing of Non-ferrous Metals</td>
<td>4.58</td>
<td>0.0172</td>
<td>0.0478</td>
<td>0.0045</td>
</tr>
<tr>
<td>38</td>
<td>Electric Power and Heat Power</td>
<td>5.22</td>
<td>0.0045</td>
<td>0.0375</td>
<td>0.0111</td>
</tr>
<tr>
<td>39</td>
<td>Gas</td>
<td>5.83</td>
<td>-0.0284</td>
<td>0.0106</td>
<td>0.0224</td>
</tr>
<tr>
<td></td>
<td>Average across all enterprises in upstream</td>
<td></td>
<td>0.0257</td>
<td>0.0554</td>
<td>0.0065</td>
</tr>
<tr>
<td>5</td>
<td>Nonmetal Ores</td>
<td>4.23</td>
<td>0.0353</td>
<td>0.0075</td>
<td>0.0042</td>
</tr>
<tr>
<td>34</td>
<td>Communication Equipment, computer</td>
<td>4.22</td>
<td>0.012</td>
<td>0.0276</td>
<td>0.0057</td>
</tr>
<tr>
<td>29</td>
<td>Metal Products</td>
<td>4.11</td>
<td>0.0223</td>
<td>0.017</td>
<td>0.0008</td>
</tr>
<tr>
<td>16</td>
<td>Furniture</td>
<td>3.43</td>
<td>0.0251</td>
<td>0.0665</td>
<td>0.0026</td>
</tr>
<tr>
<td>33</td>
<td>Electrical Machinery and Equipment</td>
<td>3.35</td>
<td>0.0313</td>
<td>0.0227</td>
<td>0.0029</td>
</tr>
<tr>
<td>30</td>
<td>General Purpose Machinery</td>
<td>3.09</td>
<td>0.0224</td>
<td>0.0449</td>
<td>0.0014</td>
</tr>
<tr>
<td>31</td>
<td>Special Purpose Machinery</td>
<td>3.09</td>
<td>0.0039</td>
<td>0.0454</td>
<td>0.0020</td>
</tr>
<tr>
<td>15</td>
<td>Wood, Bamboo, Rattan etc.</td>
<td>3.43</td>
<td>0.0208</td>
<td>0.0662</td>
<td>0.0025</td>
</tr>
<tr>
<td>22</td>
<td>Medicines</td>
<td>3.38</td>
<td>0.0097</td>
<td>0.005</td>
<td>0.0038</td>
</tr>
<tr>
<td>40</td>
<td>Water</td>
<td>3.71</td>
<td>-0.0504</td>
<td>0.0023</td>
<td>0.0082</td>
</tr>
<tr>
<td></td>
<td>Average across all enterprises in midstream</td>
<td></td>
<td>0.0153</td>
<td>0.0324</td>
<td>0.0024</td>
</tr>
<tr>
<td>8</td>
<td>Food from Agricultural Products</td>
<td>2.57</td>
<td>-0.0026</td>
<td>0.2555</td>
<td>0.0013</td>
</tr>
<tr>
<td>9</td>
<td>Foods</td>
<td>2.57</td>
<td>-0.0126</td>
<td>0.4934</td>
<td>0.0028</td>
</tr>
<tr>
<td>10</td>
<td>Beverages</td>
<td>2.57</td>
<td>-0.0304</td>
<td>0.4935</td>
<td>0.0060</td>
</tr>
<tr>
<td>13</td>
<td>Textile Wearing Apparel</td>
<td>2.48</td>
<td>0.0209</td>
<td>0.5405</td>
<td>0.0010</td>
</tr>
<tr>
<td>14</td>
<td>Leather, Fur, etc.</td>
<td>2.48</td>
<td>0.0217</td>
<td>0.5376</td>
<td>0.0018</td>
</tr>
<tr>
<td>18</td>
<td>Printing, Media</td>
<td>2.48</td>
<td>-0.0045</td>
<td>0.0289</td>
<td>0.0019</td>
</tr>
<tr>
<td>19</td>
<td>Articles for culture, education</td>
<td>1.22</td>
<td>0.0201</td>
<td>0.0474</td>
<td>0.0024</td>
</tr>
<tr>
<td>26</td>
<td>Non-metallic Mineral Products</td>
<td>3.03</td>
<td>0.0162</td>
<td>0.0244</td>
<td>0.0005</td>
</tr>
<tr>
<td>32</td>
<td>Transport Equipment</td>
<td>2.75</td>
<td>0.0068</td>
<td>0.0705</td>
<td>0.0086</td>
</tr>
<tr>
<td>35</td>
<td>Machinery</td>
<td>3.09</td>
<td>0.0004</td>
<td>0.0465</td>
<td>0.0067</td>
</tr>
<tr>
<td>36</td>
<td>Artwork and other manufacturing</td>
<td>2.66</td>
<td>0.0177</td>
<td>0.0575</td>
<td>0.0045</td>
</tr>
<tr>
<td>37</td>
<td>Recycling</td>
<td>2.58</td>
<td>0.0162</td>
<td>0.0589</td>
<td>0.0032</td>
</tr>
<tr>
<td></td>
<td>Average across all enterprises in downstream</td>
<td></td>
<td>0.0073</td>
<td>0.2188</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

Note: Stream scores are calculated by following Antras et al. (2012) using China’s IO table. More details are available upon request as to how various adjustments are appropriately made. Data Source: NBS.
Table A2. Stream Classification for All Sectors

<table>
<thead>
<tr>
<th>Ind #</th>
<th>Industries</th>
<th>2008 Stream Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upstream</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Extraction of petroleum and natural gas</td>
<td>5.83</td>
</tr>
<tr>
<td>8</td>
<td>Mining and processing of ferrous metal ores</td>
<td>5.60</td>
</tr>
<tr>
<td>44-45</td>
<td>Production and distribution of electric power and heat power and gas</td>
<td>5.22</td>
</tr>
<tr>
<td>43</td>
<td>Recycling and disposal of waste</td>
<td>5.16</td>
</tr>
<tr>
<td>25</td>
<td>Processing of petroleum, coking, processing of nuclear fuel</td>
<td>4.91</td>
</tr>
<tr>
<td>26/29</td>
<td>Manufacture of chemical raw materials and chemical products / Manufacture of rubber</td>
<td>4.71</td>
</tr>
<tr>
<td>33</td>
<td>Smelting and processing of non-ferrous metals</td>
<td>4.58</td>
</tr>
<tr>
<td>22/23</td>
<td>Manufacture of paper and paper production / Printing and recorded / Manufacture of articles for culture, education and sport activity media</td>
<td>4.42</td>
</tr>
<tr>
<td>10</td>
<td>Mining and processing of nonmetal ores</td>
<td>4.23</td>
</tr>
<tr>
<td>34</td>
<td>Manufacture of metal products</td>
<td>4.11</td>
</tr>
<tr>
<td></td>
<td>Middle Stream</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Production and distribution of tap water</td>
<td>3.71</td>
</tr>
<tr>
<td>51-55</td>
<td>Railway transport / Road transport / Urban public transport / Water transport / Air transport / Loading/unloading, removal, and other transport services / Storage</td>
<td>3.63</td>
</tr>
<tr>
<td>57-58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68-71</td>
<td>Banking / Securities / Insurance / Other financial activities</td>
<td>3.62</td>
</tr>
<tr>
<td>73</td>
<td>Leasing</td>
<td>3.60</td>
</tr>
<tr>
<td>59</td>
<td>Postal services</td>
<td>3.44</td>
</tr>
<tr>
<td>20-21</td>
<td>Processing of timber, manufacture of wood, bamboo, rattan, palm, and straw products / Manufacture of furniture</td>
<td>3.43</td>
</tr>
<tr>
<td>39</td>
<td>Manufacture of electrical machinery and equipment</td>
<td>3.35</td>
</tr>
<tr>
<td>1</td>
<td>Farming</td>
<td>3.17</td>
</tr>
<tr>
<td>35-36</td>
<td>Manufacture of general purpose machinery / Manufacture of special purpose machinery / Manufacture of measuring instruments and machinery for cultural activity and office work</td>
<td>3.09</td>
</tr>
<tr>
<td>41</td>
<td>Manulacture of non-metallic mineral products</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>Downstream</td>
<td></td>
</tr>
<tr>
<td>63-65</td>
<td>Wholesale trade / Retail trade</td>
<td>2.94</td>
</tr>
<tr>
<td>37</td>
<td>Manufacture of transport equipment</td>
<td>2.75</td>
</tr>
<tr>
<td>66-67</td>
<td>Accommodation / Catering</td>
<td>2.67</td>
</tr>
<tr>
<td>42</td>
<td>Manufacture of artwork and other manufacturing</td>
<td>2.66</td>
</tr>
<tr>
<td>60-62</td>
<td>Telecommunications and other information transfer services / Computer services / Software</td>
<td>2.62</td>
</tr>
<tr>
<td>82-83</td>
<td>Resident services / Other services</td>
<td>2.58</td>
</tr>
<tr>
<td>13-15</td>
<td>Processing of food from agricultural products / Manufacture of foods / Manufacture of beverages</td>
<td>2.57</td>
</tr>
<tr>
<td>18-19</td>
<td>Manufacture of textile, apparel, footwear, and caps / Manufacture of leather, fur, feather and related products</td>
<td>2.48</td>
</tr>
<tr>
<td>92</td>
<td>Entertainment</td>
<td>2.48</td>
</tr>
<tr>
<td>72</td>
<td>Real estate</td>
<td>1.76</td>
</tr>
<tr>
<td>47-50</td>
<td>Construction of buildings, and civil engineering / Renovation / Decoration / Other construction</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Note: There are various adjustments. For example, some industries are deleted because there is no match from I/O table or they are non-commercial sectors, which are not relevant for this paper. Details are available upon request.
Table A3. Chinese Exports by Enterprise Ownership

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Exports</th>
<th>Exports by Ownership</th>
<th>% of export from SOEs</th>
<th>Gross Industrial Output from SOEs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SOEs</td>
<td>non-SOEs</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>121.01</td>
<td>84.94</td>
<td>36.06</td>
<td>70.20</td>
</tr>
<tr>
<td>1995</td>
<td>148.78</td>
<td>99.25</td>
<td>49.53</td>
<td>66.71</td>
</tr>
<tr>
<td>1996</td>
<td>151.05</td>
<td>86.04</td>
<td>65.01</td>
<td>56.96</td>
</tr>
<tr>
<td>1997</td>
<td>182.79</td>
<td>102.74</td>
<td>80.05</td>
<td>56.21</td>
</tr>
<tr>
<td>1998</td>
<td>183.81</td>
<td>96.85</td>
<td>86.96</td>
<td>52.69</td>
</tr>
<tr>
<td>2000</td>
<td>249.20</td>
<td>116.45</td>
<td>132.76</td>
<td>46.73</td>
</tr>
<tr>
<td>2002</td>
<td>325.60</td>
<td>122.85</td>
<td>202.75</td>
<td>37.73</td>
</tr>
<tr>
<td>2004</td>
<td>593.33</td>
<td>153.58</td>
<td>439.75</td>
<td>25.88</td>
</tr>
<tr>
<td>2006</td>
<td>968.94</td>
<td>191.33</td>
<td>777.60</td>
<td>19.75</td>
</tr>
<tr>
<td>2008</td>
<td>1430.69</td>
<td>257.48</td>
<td>1173.21</td>
<td>18.00</td>
</tr>
</tbody>
</table>

Note: Exports are in billions of US dollars. The data are from China Customs. Data from some years are missing.
Table A4. Descriptive Statistics on Industrial SOEs

<table>
<thead>
<tr>
<th>Year</th>
<th>% of Work Force</th>
<th>% of Net Output</th>
<th>% of Sales</th>
<th>Gross Profits (Billion Yuan)</th>
<th>Total Losses (Billion Yuan)</th>
<th>Gross Profit to Assets (%)</th>
<th>% of Loss Making SOEs</th>
<th>Debt to Equity Ratio</th>
<th>SOE Layoffs (Million)</th>
<th>Total Number of SOEs</th>
<th>Average Assets (Million Yuan)</th>
<th>Average Profits to Sales (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>72.1</td>
<td></td>
<td></td>
<td>51</td>
<td>4.2</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>70.7</td>
<td></td>
<td></td>
<td>56</td>
<td>3.6</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>70.0</td>
<td>81.5</td>
<td>80.9</td>
<td>59</td>
<td>3.4</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>70.0</td>
<td>78.9</td>
<td></td>
<td>58</td>
<td>4.6</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>70.0</td>
<td>78.3</td>
<td></td>
<td>60</td>
<td>4.8</td>
<td>14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>69.8</td>
<td></td>
<td></td>
<td>64</td>
<td>3.2</td>
<td>14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>68.7</td>
<td>77.3</td>
<td></td>
<td>71</td>
<td>2.7</td>
<td>14.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>68.7</td>
<td>74.5</td>
<td>73.0</td>
<td>74</td>
<td>3.2</td>
<td>13.2</td>
<td>9.6</td>
<td></td>
<td>70342</td>
<td>8</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>68.4</td>
<td>73.1</td>
<td>72.8</td>
<td>69</td>
<td>5.4</td>
<td>10.6</td>
<td>13.1</td>
<td></td>
<td>70511</td>
<td>9</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>68.4</td>
<td>72.5</td>
<td>71.5</td>
<td>79</td>
<td>6.1</td>
<td>10.6</td>
<td>13.0</td>
<td></td>
<td>72803</td>
<td>10</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>68.7</td>
<td>71.2</td>
<td>69.2</td>
<td>89</td>
<td>8.2</td>
<td>10.4</td>
<td>10.9</td>
<td></td>
<td>72494</td>
<td>12</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>68.6</td>
<td>70.6</td>
<td>69.1</td>
<td>74</td>
<td>18.0</td>
<td>7.2</td>
<td>16.0</td>
<td></td>
<td>73501</td>
<td>14</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>68.4</td>
<td>70.1</td>
<td>68.8</td>
<td>39</td>
<td>34.9</td>
<td>3.2</td>
<td>27.6</td>
<td></td>
<td>74775</td>
<td>16</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>68.3</td>
<td>67.9</td>
<td>66.7</td>
<td>40</td>
<td>36.7</td>
<td>2.9</td>
<td>25.8</td>
<td></td>
<td>75248</td>
<td>19</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>68.3</td>
<td>65.0</td>
<td>63.6</td>
<td>54</td>
<td>36.9</td>
<td>3.3</td>
<td>23.4</td>
<td></td>
<td>74066</td>
<td>22</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>67.9</td>
<td>56.7</td>
<td>58.7</td>
<td>82</td>
<td>45.3</td>
<td>2.5</td>
<td>28.8</td>
<td>2.07</td>
<td>80586</td>
<td>40</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>66.4</td>
<td>53.8</td>
<td>51.7</td>
<td>83</td>
<td>48.3</td>
<td>2.2</td>
<td>30.9</td>
<td>2.11</td>
<td>79731</td>
<td>48</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>66.5</td>
<td>53.8</td>
<td>48.8</td>
<td>67</td>
<td>64.0</td>
<td>1.4</td>
<td>1.92</td>
<td></td>
<td>87905</td>
<td>54</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>66.3</td>
<td>48.5</td>
<td>46.3</td>
<td>41</td>
<td>79.1</td>
<td>0.8</td>
<td>33.6</td>
<td>1.87</td>
<td>86982</td>
<td>61</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>65.0</td>
<td>46.4</td>
<td>43.5</td>
<td>43</td>
<td>83.1</td>
<td>0.7</td>
<td>38.2</td>
<td>1.89</td>
<td>74388</td>
<td>79</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>57.3</td>
<td>57.0</td>
<td>51.8</td>
<td>53</td>
<td>115.1</td>
<td>0.7</td>
<td>40.6</td>
<td>1.80</td>
<td>64737</td>
<td>116</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>54.5</td>
<td>56.3</td>
<td>50.9</td>
<td>100</td>
<td>96.7</td>
<td>1.2</td>
<td>39.2</td>
<td>1.63</td>
<td>61301</td>
<td>131</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>51.1</td>
<td>54.3</td>
<td>49.6</td>
<td>241</td>
<td>70.4</td>
<td>2.9</td>
<td>34.1</td>
<td>1.57</td>
<td>53489</td>
<td>157</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>21.5</td>
<td>51.7</td>
<td>46.9</td>
<td>239</td>
<td>75.2</td>
<td>2.7</td>
<td>36.0</td>
<td>1.46</td>
<td>46767</td>
<td>188</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>41.5</td>
<td>48.3</td>
<td>43.1</td>
<td>263</td>
<td>66.9</td>
<td>3.0</td>
<td>36.1</td>
<td>1.46</td>
<td>41125</td>
<td>217</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>36.3</td>
<td>44.9</td>
<td>40.0</td>
<td>384</td>
<td>68.0</td>
<td>4.1</td>
<td>35.2</td>
<td>1.46</td>
<td>34280</td>
<td>276</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>32.2</td>
<td>42.4</td>
<td>35.4</td>
<td>545</td>
<td>83.7</td>
<td>5.0</td>
<td>37.4</td>
<td>1.31</td>
<td>35597</td>
<td>308</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>26.8</td>
<td>37.7</td>
<td>34.0</td>
<td>652</td>
<td>107.2</td>
<td>5.5</td>
<td>35.5</td>
<td>1.32</td>
<td>27477</td>
<td>428</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>24.1</td>
<td>35.8</td>
<td>31.9</td>
<td>849</td>
<td>117.6</td>
<td>6.3</td>
<td>31.9</td>
<td>1.30</td>
<td>24961</td>
<td>541</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>22.2</td>
<td>34.2</td>
<td>30.2</td>
<td>1080</td>
<td>89.1</td>
<td>6.8</td>
<td>25.8</td>
<td>1.30</td>
<td>20680</td>
<td>765</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>29.1</td>
<td>906</td>
<td>343.5</td>
<td>4.8</td>
<td>27.4</td>
<td>1.44</td>
<td></td>
<td></td>
<td>21313</td>
<td>886</td>
<td>6.1</td>
<td></td>
</tr>
</tbody>
</table>

Note: The data are from CEIC and National Bureau of Statistics.
Table A5. Taxes and Subsidies for Industrial Enterprises

<table>
<thead>
<tr>
<th>Year</th>
<th>GDP (Billion RMB)</th>
<th>Taxes from SOEs (%)</th>
<th>Value-Added from SOEs (%)</th>
<th>Profits from SOEs (%)</th>
<th>SOE Taxes (Billion Yuan)</th>
<th>SOE Value Added (Billion Yuan)</th>
<th>SOE Profits (Billion Yuan)</th>
<th>Subsidy to SOEs (billion RMB)</th>
<th>Subsidy to SOEs / GDP (%)</th>
<th>SOE Profit / Gov’t Revenue (%)</th>
<th>SOE Taxes / Gov’t Revenue (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>365</td>
<td>89.0</td>
<td>84.9</td>
<td>28</td>
<td>51</td>
<td>44.9</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>406</td>
<td>88.8</td>
<td>86.0</td>
<td>30</td>
<td>56</td>
<td>49.1</td>
<td>26.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>455</td>
<td>87.7</td>
<td>81.5</td>
<td>84.6</td>
<td>32</td>
<td>130</td>
<td>59</td>
<td>50.5</td>
<td>27.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>489</td>
<td>86.2</td>
<td>78.9</td>
<td>85.0</td>
<td>34</td>
<td>132</td>
<td>58</td>
<td>49.3</td>
<td>29.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>532</td>
<td>85.6</td>
<td>78.3</td>
<td>84.9</td>
<td>37</td>
<td>137</td>
<td>60</td>
<td>49.3</td>
<td>30.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>596</td>
<td>84.5</td>
<td>83.0</td>
<td>39</td>
<td>64</td>
<td>46.9</td>
<td>28.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>721</td>
<td>83.6</td>
<td>77.3</td>
<td>82.8</td>
<td>45</td>
<td>173</td>
<td>71</td>
<td>43.0</td>
<td>27.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>902</td>
<td>81.9</td>
<td>74.5</td>
<td>79.4</td>
<td>60</td>
<td>204</td>
<td>74</td>
<td>-51</td>
<td>-5.62</td>
<td>36.8</td>
<td>29.7</td>
</tr>
<tr>
<td>1986</td>
<td>1028</td>
<td>82.7</td>
<td>73.1</td>
<td>78.6</td>
<td>65</td>
<td>218</td>
<td>69</td>
<td>-32</td>
<td>-3.16</td>
<td>32.5</td>
<td>30.7</td>
</tr>
<tr>
<td>1987</td>
<td>1206</td>
<td>81.8</td>
<td>72.5</td>
<td>78.3</td>
<td>73</td>
<td>253</td>
<td>79</td>
<td>-38</td>
<td>-3.12</td>
<td>35.8</td>
<td>33.1</td>
</tr>
<tr>
<td>1988</td>
<td>1504</td>
<td>80.4</td>
<td>71.2</td>
<td>75.0</td>
<td>88</td>
<td>306</td>
<td>89</td>
<td>-45</td>
<td>-2.97</td>
<td>37.8</td>
<td>37.5</td>
</tr>
<tr>
<td>1989</td>
<td>1699</td>
<td>80.8</td>
<td>70.6</td>
<td>74.3</td>
<td>103</td>
<td>346</td>
<td>74</td>
<td>-60</td>
<td>-3.52</td>
<td>27.9</td>
<td>38.7</td>
</tr>
<tr>
<td>1990</td>
<td>1867</td>
<td>80.4</td>
<td>70.1</td>
<td>69.3</td>
<td>111</td>
<td>357</td>
<td>39</td>
<td>-58</td>
<td>-3.10</td>
<td>13.2</td>
<td>38.0</td>
</tr>
<tr>
<td>1991</td>
<td>2178</td>
<td>79.2</td>
<td>67.9</td>
<td>62.6</td>
<td>126</td>
<td>402</td>
<td>40</td>
<td>-51</td>
<td>-2.34</td>
<td>12.8</td>
<td>40.0</td>
</tr>
<tr>
<td>1992</td>
<td>2692</td>
<td>77.1</td>
<td>65.0</td>
<td>55.0</td>
<td>141</td>
<td>484</td>
<td>54</td>
<td>-44</td>
<td>-1.65</td>
<td>15.4</td>
<td>40.4</td>
</tr>
<tr>
<td>1993</td>
<td>3533</td>
<td>70.5</td>
<td>56.7</td>
<td>51.0</td>
<td>164</td>
<td>728</td>
<td>82</td>
<td>-41</td>
<td>-1.16</td>
<td>18.8</td>
<td>37.7</td>
</tr>
<tr>
<td>1994</td>
<td>4820</td>
<td>65.2</td>
<td>53.8</td>
<td>46.1</td>
<td>205</td>
<td>790</td>
<td>83</td>
<td>-37</td>
<td>-0.76</td>
<td>15.9</td>
<td>39.2</td>
</tr>
<tr>
<td>1995</td>
<td>6079</td>
<td>64.7</td>
<td>53.8</td>
<td>40.7</td>
<td>221</td>
<td>831</td>
<td>67</td>
<td>-33</td>
<td>-0.54</td>
<td>10.7</td>
<td>35.4</td>
</tr>
<tr>
<td>1996</td>
<td>7118</td>
<td>63.6</td>
<td>48.5</td>
<td>27.7</td>
<td>232</td>
<td>874</td>
<td>41</td>
<td>-34</td>
<td>-0.47</td>
<td>5.6</td>
<td>31.4</td>
</tr>
<tr>
<td>1997</td>
<td>7897</td>
<td>61.4</td>
<td>46.4</td>
<td>25.1</td>
<td>248</td>
<td>919</td>
<td>43</td>
<td>-37</td>
<td>-0.47</td>
<td>4.9</td>
<td>28.7</td>
</tr>
<tr>
<td>1998</td>
<td>8440</td>
<td>70.0</td>
<td>57.0</td>
<td>36.0</td>
<td>285</td>
<td>1108</td>
<td>53</td>
<td>-33</td>
<td>-0.40</td>
<td>5.3</td>
<td>28.8</td>
</tr>
<tr>
<td>1999</td>
<td>8968</td>
<td>69.8</td>
<td>56.3</td>
<td>43.6</td>
<td>308</td>
<td>1213</td>
<td>100</td>
<td>-29</td>
<td>-0.32</td>
<td>8.7</td>
<td>26.9</td>
</tr>
<tr>
<td>2000</td>
<td>9921</td>
<td>67.8</td>
<td>54.3</td>
<td>54.8</td>
<td>347</td>
<td>1378</td>
<td>241</td>
<td>-28</td>
<td>-0.28</td>
<td>18.0</td>
<td>25.9</td>
</tr>
<tr>
<td>2001</td>
<td>10966</td>
<td>65.7</td>
<td>51.7</td>
<td>50.5</td>
<td>366</td>
<td>1465</td>
<td>239</td>
<td>-30</td>
<td>-0.27</td>
<td>14.6</td>
<td>22.3</td>
</tr>
<tr>
<td>2002</td>
<td>12033</td>
<td>63.8</td>
<td>48.3</td>
<td>45.5</td>
<td>398</td>
<td>1594</td>
<td>263</td>
<td>-26</td>
<td>-0.22</td>
<td>13.9</td>
<td>21.1</td>
</tr>
<tr>
<td>2003</td>
<td>13582</td>
<td>61.2</td>
<td>44.9</td>
<td>46.0</td>
<td>462</td>
<td>1884</td>
<td>384</td>
<td>-23</td>
<td>-0.17</td>
<td>17.7</td>
<td>21.3</td>
</tr>
<tr>
<td>2004</td>
<td>15988</td>
<td>31.3</td>
<td>42.4</td>
<td>45.7</td>
<td>299</td>
<td>2321</td>
<td>545</td>
<td>-22</td>
<td>-0.14</td>
<td>20.7</td>
<td>11.3</td>
</tr>
<tr>
<td>2005</td>
<td>18494</td>
<td>54.0</td>
<td>37.7</td>
<td>44.0</td>
<td>622</td>
<td>2718</td>
<td>652</td>
<td>-19</td>
<td>-0.10</td>
<td>20.6</td>
<td>19.7</td>
</tr>
<tr>
<td>2006</td>
<td>21631</td>
<td>52.2</td>
<td>35.8</td>
<td>43.5</td>
<td>754</td>
<td>3259</td>
<td>849</td>
<td>-18</td>
<td>-0.08</td>
<td>21.9</td>
<td>19.5</td>
</tr>
<tr>
<td>2007</td>
<td>26581</td>
<td>49.9</td>
<td>34.2</td>
<td>39.8</td>
<td>919</td>
<td>3997</td>
<td>1080</td>
<td>-28</td>
<td>-0.10</td>
<td>21.0</td>
<td>17.9</td>
</tr>
<tr>
<td>2008</td>
<td>31405</td>
<td>44.4</td>
<td>29.7</td>
<td>1065</td>
<td>906</td>
<td>16</td>
<td>-0.05</td>
<td>14.8</td>
<td>17.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports the value added taxes payable and other business taxes and charges, value added, profit, and subsidy of industrial SOE and SHEs and other industrial enterprises. The data are from China Finance Yearbook and CEIC.