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Abstract 

China’s coal-fired winter heating systems generate large amounts of hazardous emissions that significantly 

deteriorate air quality. Exploiting regression discontinuity designs based on the exact starting dates of winter 

heating across different cities, we estimate the contemporaneous impact of winter heating on air pollution and 

health. We find that turning on the winter heating system increased the weekly Air Quality Index by 36% and 

caused 14% increase in mortality rate. This implies that a 10-point increase in the weekly Air Quality Index causes 

a 2.2% increase in overall mortality. People in poor and rural areas are particularly affected by the rapid 

deterioration in air quality; this implies that the health impact of air pollution may be mitigated by improved socio- 

economic conditions. Exploratory cost-benefit analysis suggests that replacing coal with natural gas for heating 

can improve social welfare. 
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I. Introduction  

China’s winter heating policy is one of the largest and most expensive energy welfare policies in the 

developing world. During the winter-heating seasons, large centralized coal-fired boilers provide free 

or heavily-subsidized indoor heating to residential and commercial buildings in northern China. As 

emissions from coal combustion are the major anthropogenic contributor to air pollution in China, 

these boilers cause a significant deterioration in air quality when they are in use (Xiao et al., 2015). The 

health impact of this sudden and widespread environmental degradation has not been thoroughly 

examined.   

This paper assesses the impact of winter heating on air pollution and health utilizing regression 

discontinuity (RD) designs based on the turning-on dates of the heating systems in northern Chinese 

cities. We collected data on the exact dates when the winter heating systems were turned on for 114 

northern Chinese cities from 2014 to 2015; we compare air pollution and mortality levels around the 

turning-on time. As the dates of turning-on the winter heating systems are pre-determined and 

arguably orthogonal to other health risk factors (such as weather conditions) that may affect 

population health, the Chinese winter heating program provides a compelling natural experiment to 

estimate the causal effects of air pollution on health.    

We have three key findings. First, there is strong evidence that air quality deteriorated immediately 

with the onset of winter heating. On average, we observe the Air Quality Index (AQI) increased by 40 

points (36%) at the onset of the winter heating. After further examining the meteorological data, we 

conclude that the changes in air quality were caused by winter heating, rather than by variations in 

weather conditions.   

Second, we find that the sudden deterioration in air quality caused by winter heating immediately 

increased mortality. On average, the weekly mortality increased by 14% with the start of the winter 

heating. This effect is driven mostly by extra deaths from cardiorespiratory diseases, confirming air 

pollution as the causal factor. Heterogeneity analyses further show that the deterioration in air quality 

increased mortality rates for the elderly, but not for young people. We find that increased mortality is 

heavily concentrated among economically disadvantaged groups, i.e. residents in rural and low-income 

areas.  

Third, combining these results, we can estimate the causal impact of air quality on mortality using 

a fuzzy RD (instrumental variable) framework. Our analysis shows that a 10-point increase in AQI 

will lead to a 2.2% increase in weekly mortality and that a 10-µg/m3 increase in PM2.5 concentrations 
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will lead to a 2.5% increase in mortality. This size of the effect is substantially larger than the OLS 

estimates, suggesting the OLS estimates can be severely biased. In addition, unlike the OLS estimate 

which is sensitive to the inclusion of and different weather controls, our fuzzy RD estimates are 

remarkably robust to different specifications, suggesting that the air pollution variations caused by 

turning on the heating systems are indeed orthogonal to the factors that tend to confound the OLS 

estimates.   

Our findings contribute to the existing literature in four major ways. First and foremost, we are 

among the first to extend the air pollution effect studies to rural areas and highlight the longoverlooked 

disparity in air pollution exposure between urban and rural areas. As air quality monitors are often 

placed in urban areas, the majority of the existing studies focus on outcomes of urban residents, who 

tend to be richer, more educated, take more avoidance behaviors, and have better access to medical 

services.1 Arguably, these factors can reshape the pollution-health relationship, as richer and more 

educated people may be better informed about the potential harms of pollution and can also get faster 

access to urgent medical care when necessary. Indeed, when we separately investigate the urban and 

rural subsamples, we find the effects of air pollution for rural residents are more than 3 times larger 

than those for urban residents. This suggests that: 1) improving socioeconomic conditions could 

significantly mitigate the health impact of air pollution; and 2) policymakers should be more cautious 

about policies/regulations that may transfer pollution from rich urban to poor rural areas, as the health 

damages of the transfer may be significantly larger for the poor rural areas.    

Second, we add to a growing strand of economic research investigating the impact of air pollution 

on mortality in developing countries. Much of the existing evidence on the air pollution effect comes 

from developed countries, where the level of air pollution is far below what is observed in some very 

polluted developing countries such as China and India (see Graff Zivin and Neidell (2013) for a review 

on the economics literature). 2 As the pollution-health relationship can depend on local socioeconomic 

conditions and may possibly be non-linear (e.g., Arceo et al., 2016; Lefohn et al., 2010; Smith and Peel, 

2010), our estimates are thus more relevant to more than 4 billion people in developing countries who 

are currently exposed to similar levels of air pollution as in China (mean daily PM2.5 concentration is 

 
1 To the best of our knowledge, the only exception is a concurrent paper from He et al. (2019). He et al. (2019) estimate 

the impact of air pollution and mortality using straw burning activities as the instrument. They find that straw burning 

has significant impact on air pollution and health in rural areas but not in urban areas.   
2 Econlit shows only less than 20% of air pollution and health studies focus on developing countries. Studies focus on 

air pollution and mortality in developing countries include, but not limited to, Jayachandran (2009), Chen et al. (2013), 

Greenstone and Hanna (2014), He et al. (2016), Arceo et al. (2016), and Ebenstein et al. (2017).   
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76 µg/m3 in our data). Additionally, we also document that the fuzzy RD estimates (which reflect the 

causal relationship rather than an association between air pollution and mortality) are substantially 

larger than OLS estimates. This implies that there may exist a severe downward bias in associational 

estimates which are still widely used by both governments and international agencies to establish air 

quality standards. This echoes a key argument made in a Science article: approaches relying on 

controlling for confounding factors provide unreliable estimates of the air pollution effects and that 

there is a great need to re-assess the consequences of air pollution at a much larger scale (Dominici et 

al., 2014).   

Third, in terms of the empirical setup, this paper exploits a new identification strategy embedded 

in China’s winter heating policy and provides a different perspective to understanding the costs of 

coal-fired heating. Previously, both Chen et al., (2013) and Ebenstein et al. (2017), who also studied 

China’s winter heating policy, focused on long-term health outcomes and compared the air pollution 

levels across different cities caused by the policy.3 We bring the time dimension into this study and use 

changes in air pollution levels within the same city for identification. In doing so, we complement the 

previous two studies by (1) confirming that winter heating policy indeed degrades air quality in China 

(using a different source of variation), and (2) showing that the polluted air can bring about immediate 

disastrous health consequences. This approach can also be used to study other short-term economic 

and health outcomes, such as morbidity, avoidance behavior, and absenteeism.  

Finally, based on the estimates from our study we conducted an exploratory benefit-cost analysis 

on China’s coal replacement policy. In 2014 to deal with the severe air pollution, the Chinese 

government declared a “war against pollution.” Among the various initiatives that attempted to reduce 

air pollution, the government launched an ambitious plan that planned for phasing out coal-fired 

boilers, with cleaner energy substuting for coal during the winter in northern China. Following these 

mandates, in 2017 many places were required to replace coal with natural gas or electricity for heating. 

As the costs of these substitutes are higher than coal, many people in the areas affected by these 

substitutions were skeptical about the efficacy of the policy. Combining results of our study and 

estimates from multiple other sources, we show that while the long-run benefits of replacing coal with 

 
3 The two previous studies estimate the air pollution discontinuity across China’s Huai River line, which is the boundary 

between southern China and the northern region where centralized winter heating systems are provided. The identification 
strategy in both papers is a cross-sectional RD design based on the geographical discontinuity caused by the Huai River 
line. This paper provides an alternative design to study the impact of the winter heating policy: turning on the winter 

heating systems (coal-fired boiler systems) causes an immediate increase in air pollution and damage to health.  
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natural gas for winter heating are likely to be greater than the costs, the short-run benefits are lower 

than the costs. This suggests that the government policies should be “gradual” and “incremental” in 

substituting gas/electricity for coal, rather than implementing a “one-fit-all” policy that might 

engender greater resistance. Ideally, the government should start from regions that have a higher 

willingness to pay (frequently associated with higher incomes and development) for clean air, and then 

gradually extend the policy to less developed areas.   

The remainder of this paper is structured as follows. Section II provides background on the winter 

heating system. Section III discusses the data. Section IV presents the empirical strategies. Section V 

summarizes the main results, conducts a battery of robustness checks, and compare our estimates with 

other studies. Section VI explores the heterogeneous impacts of air pollution. Section V applies our 

estimates to the exploratory benefit-cost analysis of China’s coal-to-gas policy and discuss potential 

biases in the calculations. Section VIII concludes.   

II. China’s Winter Heating System  

Following the example of the former Soviet Union’s system, China’s winter heating system was 

initiated in the 1950s and was gradually expanded during the planned economy period (1950s-1980s). 

The Chinese government limited the heating entitlement to areas located in the north because of 

energy and financial constraints (Chen et al., 2013). The dividing line between northern and southern 

China roughly follows the Huai River and Qinling Mountains along which the average temperature in 

January is around zero Celsius.   

The heating system connects large centralized boilers with residential and commercial buildings. 

A network of the heating system consists of a boiler, water pipelines, and radiators that deliver hot 

water to homes and offices. In northern China, the centralized winter heating service is provided either 

at a zero price or a heavily subsidized one. In contrast, state-provided centralized winter heating does 

not exist in southern China because the government arbitrarily decided that it was not needed south 

of the Huai River line.  

Most northern Chinese cities receive free or heavily-subsidized heating between November 15th 

and March 15th. For some northern cities regarded as very cold in winter (e.g. Harbin in Heilongjiang 

Province), the heating season is extended to over six months, from October until April. Once the city 

governments determine when to turn on the winter heating system (it may be one to two months 

ahead of time), they will announce it to the public. Unless weather conditions change dramatically, the 
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exact date of the winter heating season will not be altered. During our sample period, we did not 

observe any city changed the dates of winter heating during our sample period.    

The winter heating system is mostly coal-based and technically inefficient. Researchers in chemical 

and environmental sciences have documented that incomplete combustion of coal increases air 

pollution by generating substantial particulate matter emissions, SO2, and NOx (Almond et al., 2009; 

Muller et al., 2011). When the winter heating period starts, coal consumption rises substantially, 

resulting in rapid and substantial increases in air pollution. This provides a quasi-experimental setting 

for researchers to utilize the discontinuity in air pollution caused by turning on the coal-burning boilers 

to estimate the impact of air pollution on health.  

As the evidence of the negative impact of air pollution on Chinese health accumulates, there is an 

increasing demand that governments alleviate air quality. Consequently, the Chinese government 

initiated various programs to control emissions caused by the winter heating systems. The most 

notable one is the replacement of coal with natural gas or electricity as primary fuels for heating. The 

switch was first proposed in Beijing and initiated there in 2013, then the pilot runs were gradually 

expanded to other northern cities, including Tianjin and cities in Hebei, Shanxi, Shandong, and Henan 

in 2015 and 2016. Under this policy the coal-fired boilers are to be gradually replaced by gas or electric 

boilers in urban areas; households in rural areas will receive subsidies to replace coal stoves with natural 

gas or electric stoves.4   

III. Data and Summary Statistics  

A. Winter Heating and Air Pollution Data  

For our identification strategy, it is crucial to have accurate information about when the winter heating 

system was started for each city. We collected data for the winter heating period of all the cities in 

China from city governments’ websites. We then verified the winter heating starting dates through 

local online forums.  

 
4 A summary of the policy to switch from coal to gas/electricity policy in northern provinces can be found on the 

website of the Association of Urban Natural Gas: http://www.chinagas.org.cn/hangye/news/2017-06-16/39267.html  
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To understand how winter heating affects air pollution we collected comprehensive air quality 

information from the National Urban Air Quality Real-time Publishing Platform.5 The platform is 

administrated by China’s Ministry of Environmental Protection and publishes real-time Air Quality  

Index (AQI) and concentrations of criteria air pollutants for all state-controlled monitoring sites.6   

The Chinese government has mandated detailed quality assurance and quality control programs 

at each monitoring station. According to the requirements of Ambient Air Quality Standard 

(GB30952012), this platform was put in operation beginning in January 2013, and cities were added 

to the platform in a staggered manner.7 We collected data from 1,497 individual air monitoring stations 

during the sample period (Appendix Figure A1 shows the distribution of air monitoring sites). These 

stations cover all Chinese prefectural cities and encompass most of China's geography. We computed 

weekly air pollution data for each monitoring station by taking the mean of the hourly values.   

Because local governments in China are given strong incentives to reduce air pollution in China 

and air quality readings are used by the central government to assess local governments’ environmental 

performance, there is a concern that local governments may manipulate the data. Previously, several 

studies investigated the air pollution data in China and found suspicious patterns in the distribution of 

the reported data (e.g. Chen et al., 2012; Ghanem and Zhang, 2014). However, we do not find such 

evidence in our data, likely due to the new air quality monitoring system (established in 2013) 

automated the sampling and reporting process of air quality. The new system is able to collect air 

pollution information in real time and send data to the central government without local interference. 

Greenstone et al. (2019) find that the automated air quality monitoring system significantly improved 

the reliability of the air quality data, as evidenced by the levels, variance, and seasonality of reported 

air pollution measures, as well as the correlation between particulate matter concentration and satellite 

data.   

 
5 The system is the largest real-time air quality monitoring network ever built in China, implementing the full coverage of 

municipalities, provincial capitals, cities with independent planning, all prefecture-level cities, key environmental 

protection cities, and environmental protection model cities. The real-time data is published on the following website: 
http://106.37.208.233:20035.  
6 Appendix Table A2 explains how the AQI is constructed based on six major air pollutants: PM2.5, PM10, SO2, NO2, O3 
and CO.   
7 The reporting system covers 338 prefecture-level cities and 1,436 sites across the country by the end of 2015. 8 

See Appendix A1 for a detailed description of the sampling and development of the DSP System.    
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B. Mortality Data  

The mortality data come from the Chinese Center for Disease Control and Prevention's (CCDC)  

Disease Surveillance Points (DSP) system.8 The DSP system is a remarkably high-quality nationally 

representative survey and provides detailed cause-of-death data for a coverage population of around 

324 million people (nearly a quarter of the total population) at 605 separate locations (322 city districts 

and 283 rural counties) for each year since 2013. The community or hospital doctors report the cause 

of death to the CCDC.8 This information is used to assign all deaths to either cardiorespiratory causes 

of death (i.e., heart, stroke, lung cancers, and respiratory illnesses) that are plausibly related to air 

pollution exposure or non-cardiorespiratory causes (i.e., cancers other than lung and all other causes). 

Following the literature on air pollution and mortality (e.g. Dockery and Pope, 1994; Peng et al., 2006; 

Schwartz, 1993), we exclude deaths from external causes in our subsequence analysis.9 We use weekly 

mortality datasets created for each DSP location in 2014 and 2015 for this project.   

C. Weather Data  

We obtained daily weather information from the Global Summary of the Day (GSOD).10 Our analysis 

uses 409 ground weather stations with nearly-complete weather data for 2014 and 2015. The weather 

information includes temperature, dew point, and precipitation.   

D. Matching  

We matched mortality data with air pollution data and weather data at the DSP location level, following 

the process of Ebenstein et al. (2017). To assign weekly values of pollution from the monitors to DSP 

locations, we first identified the centroid of each DSP location (either a city district or a county) and 

the geographic coordinates of air monitoring stations. Then, we calculated the distance between the 

monitoring stations and each DSP locations and created a distance matrix. Our measure of air 

pollution for a DSP location in a week was calculated as follows. If a DSP location was within 50 

kilometers of a valid station reading, the nearest station's reading was used. If a DSP location was not 

 
8 All communities were subject to strict quality control procedures administered by the CDC network at county/district, 

prefecture, province and national levels, for accuracy and completeness of the death data.    
9 The external causes of mortality include ICD 10 codes from V01 through Y99. For example, traffic accidents and other 

causes of accidental injury.   
10 The GSOD data are available for download from NOAA’s website   
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within 150 kilometers of any of the stations, the DSP location was excluded from the sample. If a DSP 

location was within 150 kilometers of a station but not within 50 kilometers, the pollution was 

calculated as the weighted average of air pollution at each monitor with a valid reading within 150 

kilometers, with the weights determined by the inverse of the distance between the two points.   

We focus on DSP locations in 13 provinces in northern China for our main analysis. Five 

provinces in northwestern China, namely Gansu, Ningxia, Qinghai, Xinjiang, and Xizang, are excluded 

because these regions have low population densities and encompass vast swaths of desert, semi-desert, 

and mountain terrain. The winter heating systems in these regions, while they do exist, are small in 

scale and do not generate large amounts of emissions that could induce significant changes in air 

quality.11   

Appendix Table A3 lists the starting dates of winter heating in all DSP locations in the sample. 

The majority of the cities started winter heating between mid-October and mid-November. While 

southern Chinese cities do not have winter heating systems, we used them to conduct a placebo test.  

The AQI level can differ substantially across monitoring sites on a weekly basis. The inaccurate 

assignment of air pollution to DSP locations can potentially introduce measurement error and thus 

bias the estimates (Sarnat et al., 2005). As such, we checked the robustness of the results by 

experimenting with different tolerance distances between DSP locations and monitoring sites.  

E. Summary Statistics  

Table 1 reports the summary statistics for mortality, AQI, temperature, dew point, and precipitation 

for 114 DSP locations in northern and northeastern China. For each DSP location, we created 

timeseries data that cover sixteen weeks before and after the starting date of winter heating.12 In total, 

we have 3,647 DSP-week observations entering the analysis. The mortality rate was higher in rural 

areas than in urban areas. The mean AQI during our sample period was 109, with rural air quality 

slightly worse than urban air quality. The average PM2.5 concentration was 76 µg/m3, which is more 

than 7 times higher than the WHO annual standard.   

 
11 Given that the population density is low in those provinces and the winter-heating system in those provinces only 
covers a very small portion of the population, the emissions generated from the winter heating system can be quickly 
dispersed. Empirically, we also find that there is no discontinuity in air quality in these provinces when the winter 
heating system is turned on.   
12 Most DSP locations start to provide winter heating in November. The sample period covers approximately 8 months 

from July 2014 to March 2015.   
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IV. Empirical Strategy   

A. The Impact of Winter Heating on AQI and Mortality  

We first estimate the impact of winter heating on AQI and mortality using a regression discontinuity 

design, in which the date serves as the running variable. We examine whether there exist discontinuous 

changes in air quality and mortality when the winter heating system is turned on using the following 

specification:  

𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝛽𝛽1𝐼𝐼𝑡𝑡 ≥ 𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 + 𝛽𝛽2f𝑡𝑡−𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 + 𝛽𝛽3I ∗ f𝑡𝑡−𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 + 𝛾𝛾𝑊𝑊𝑖𝑖𝑡𝑡 + 

𝜃𝜃𝑖𝑖 + 𝑢𝑢𝑖𝑖,𝑡𝑡  (1) 

𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝛼𝛼1𝐼𝐼𝑡𝑡 ≥ 𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 + 𝛼𝛼2f𝑡𝑡−𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 + 𝛼𝛼3I ∗ f𝑡𝑡−𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 + 𝜃𝜃𝑊𝑊𝑖𝑖𝑡𝑡 + 

𝜃𝜃𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑡𝑡  (2) 

where 𝑃𝑃𝑖𝑖,𝑡𝑡 and 𝑌𝑌𝑖𝑖,𝑡𝑡 respectively indicate the air pollution and mortality in location i at time t. 𝐼𝐼(𝑡𝑡 

≥ 𝑊𝑊𝑊𝑊𝑖𝑖𝑡𝑡) is an indicator variable that equals one if the winter heating system is turned on in 

location i at week t. 𝑡𝑡−𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 represents the number of weeks from the turning-on date and is 

our running variable. The specification includes a function f𝑡𝑡−𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 and allows its effect to 

differ before and after the turn-on date, which is the basis of the “control function” style approach of 

the RD design. 𝑊𝑊𝑖𝑖𝑡𝑡 are weather controls correlated with air pollution, including temperature,  

precipitation, and dew point. 𝜃𝜃𝑖𝑖 indicates DSP location-specific fixed effect, and 𝑢𝑢𝑖𝑖,𝑡𝑡 and 𝜖𝜖𝑖𝑖,𝑡𝑡 are 

the error terms.   

We can assess the sensitivity of the results to several functional forms for f, using both 

nonparametric and parametric methods. In this paper, we emphasize the results from the non-

parametric approach, as the parametric RD approach is found to have several undesirable statistical 

properties (Gelman and Imbens (2019). In practice, the choice of bandwidth in the non-parametric 

estimation involves balancing the conflicting goals of focusing on comparisons near the turning-on 

dates of winter heating, where the identification assumption is strongest, and providing a large enough 

sample for reliable estimation. We choose the optimal bandwidth and correct the bias caused by small 

bandwidth following Calonico et al. (2014) and Calonico et al. (2019). Robust standard errors are 

clustered at the DSP level. To control for DSP fixed effects and weather conditions in the 

nonparametric estimation, we adopt a two-stage approach following Lee and Lemieux (2010). First, 
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we residualize the outcome variable by absorbing DSP fixed effects and weather variables through 

OLS regressions. Then, we apply the local linear RD to the residualized outcome.   

The parameters of interest are 𝛽𝛽1 and 𝛼𝛼1, which provides an estimate of whether there exist 

discontinuities in air pollution and mortality levels immediately after winter heating starts, after flexible 

adjustment for the week before/after the turn-on dates and the covariates. If unobserved determinants 

of 𝑃𝑃𝑖𝑖,𝑡𝑡 and 𝑌𝑌𝑖𝑖,𝑡𝑡 are uncorrelated with the exact dates when the heating system is turned on, the 

estimated 𝛽𝛽1 and 𝛼𝛼1 reveals the causal effect of winter heating on 𝑃𝑃𝑖𝑖,𝑡𝑡 and 𝑌𝑌𝑖𝑖,𝑡𝑡.   

One may be concerned that winter heating itself may affect mortality. For example, the increased 

indoor temperature (due to heating) will be beneficial to human health and should lower mortality 

rates. If this were the case, what we capture in the RD design would be a lower bound of the air 

pollution effect. In other words, if the potential health gain from warmer indoor temperature can be 

properly controlled, we should observe an even greater impact of air pollution on mortality. 13 

However, we will show evidence that the air pollution effect is unlikely to be confounded by potential 

indoor temperature change.   

B. The Impact of AQI on Mortality  

We use a fuzzy RD approach to estimate the impact of air quality on mortality. In the simplest form, 

the fuzzy RD approach assesses the impact of a binary treatment where the probability of treatment 

rises at some threshold, but being above or below the threshold does not fully determine treatment 

status. In our context, exposure to air pollution increases significantly when winter heating starts, but 

pollution exists before the winter heating starts, making our context naturally analogous to a fuzzy 

RD.15 The fuzzy RD approach produces estimates of the impact of units of the AQI on mortality, so 

the results can be applicable to other settings (e.g., other developing countries with comparable air 

pollution levels).   

Note that the estimated effect is not a laboratory-style estimate of the consequences of exposure 

to air pollution where all other factors are held constant. Instead, it already reflects individuals’ actions 

to protect themselves from the resulting health problems of pollution. While the laboratory-style 

 
13 The mean temperature when the winter heating system was turned on in our sample was about 49 degrees Fahrenheit 
(9.4 degrees Celsius). In a separate project, we estimated the temperature-mortality relationship in major Chinese cities 
and find that low temperature does not lead to excess deaths until it goes below 32 degrees Fahrenheit (or 0 degrees 
Celsius). These results are available upon request.  15 See Calonico et al. (2014) for more details.  
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estimate might be of interest to pure scientists who want to know the pathology of air pollution effect, 

its relevance for understanding the real-world consequences is less clear.   

V. Main Results  

A. Visualizing the Data using RD Plots  

Before turning to the estimation results, we visualize the patterns of air pollution and mortality in the 

data. In Figure 1, we plot the AQI changes over time. The Y-axis indicates the weekly AQI and the 

X-axis indicates the number of weeks before and after the threshold. We plot the polynomial fit of 

AQI, along with the 95% confidence interval, against weeks around the threshold. It is apparent that 

there is a large increase in AQI immediately after the heating period starts.  

In Figure 2, we fit the mortality data. We also observe that the mortality rate jumps upward to a 

higher level when the heating system is on. Compared with the AQI data, the mortality data are less 

volatile. Nevertheless, the shapes of the two fitted curves are similar, suggesting that air quality may 

be an important determinant of mortality on a weekly basis.   

In Figure 3, we separately look at the cardiorespiratory (Panel A) and non-cardiorespiratory 

mortality (Panel B).14 As air pollution affects primarily cardiorespiratory diseases (Ebenstein et al., 2017; 

He et al., 2016), we expect to observe a significant discontinuity in cardiorespiratory mortality, but not 

in non-cardiorespiratory mortality. Figure 3 confirms this conjecture: we observe that only 

cardiorespiratory mortality significantly increased after the heating system is turned on.   

In Figure 4, we plot the RD graphs for the weather variables which are important confounders in 

estimating the short-term health effects of air pollution as they can affect both air pollution and human 

health. We cannot visually detect major changes in these variables, suggesting that our findings in 

Figures 1 to 3 are unlikely to be driven by temporary weather changes.   

B. The Impacts of Winter Heating on AQI and Mortality  

Table 2 presents the estimated discontinuities of the AQI and mortality rates at the threshold. Columns 

(1)-(3) summarize the bias-corrected RD estimates and the robust standard errors following Calonico 

 
14 The division of cardiorespiratory and non-cardiorespiratory mortality is based on the ICD10 code. Cardiorespiratory 

mortality includes deaths caused by respiratory diseases (J30-J98), respiratory infections (J00-J06, J10-J18, J20-J22, 

H65H66), lung cancers (C33-C34), and cardiovascular diseases (I00-I99). Non-cardiorespiratory mortality includes all 

other causes except injuries (V01-Y89).  
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et al. (2014). All estimations use the Epanechnikov kernel.15 The DSP location fixed effects are 

included in column (2), and both the DSP location fixed effects and weather controls are included in 

column (3). The DSP fixed effects control for location-specific socio-economic  (e.g. the number of 

health facilities, availability of medical services, and income) conditions that do not vary in the short 

run. Weather conditions are important confounding factors that may affect the mortality rate. For 

comparison, column (4) presents the conventional RD estimates with traditional standard errors. Each 

RD estimate also has the optimal bandwidth for both sides of the threshold.    

We emphasize the estimates from the most comprehensive specification with the most conservative 

standard errors (column (3)). In Panel A, we find that winter heating increases the AQI by 40 units; 

this translates into a 36% increase at the threshold (the mean AQI in the week before winter heating 

is 110). Panel B estimates the impact of winter heating on overall mortality and finds that turning on 

winter heating increases overall mortality by 14%. Panels C and D report the results separately for 

cardiorespiratory and non-cardiorespiratory mortality. In all specifications a statistically significant 

increase in cardiorespiratory mortality rates is found at the onset of the winter heating period; in 

contrast, the change in mortality rates of non-cardiorespiratory illnesses is more modest and 

statistically insignificant. These results echo the graphical analyses that winter heating can cause a 

significant deteriorate in the air quality in northern Chinese cities and cause an increase in mortality 

due to cardiorespiratory diseases.   

Note that the estimated coefficients are remarkably robust to alternative specifications. In 

particular, including the DSP location-fixed effects and weather controls has negligible impact on the 

estimated coefficients. This suggests that time-invariant risk factors and weather conditions are not 

correlated with the heating indicator around the threshold. Appendix Table A4 provides the RD 

estimates for each weather variable; there is no statistically significant discontinuity in any of the 

weather variables, providing additional support for our RD approach.   

D. The Impact of Air Pollution on Mortality  

Table 3 reports the estimated effects of a 10-point change in the AQI on mortality rates. We present 

the result in column (3), where both DSP fixed effects and weather conditions are controlled. Panel 

A shows that for each 10-point increase in the AQI, there is a 2.2% increase in overall mortality. For 

 
15 Triangle kernel yields quantitatively similar baseline results, but sometimes we cannot obtain convergence in the 

subsample analyses using triangle kernel.   
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the cardiorespiratory mortality rate, a 10-point increase in AQI increases mortality by 2.7% (Panel B). 

In contrast, for the non-cardiorespiratory mortality rate, we fail to observe a statistically significant 

result (Panel C). Such a difference is consistent with the results in the previous section and indicates 

that winter heating affects mortality through its impact on air pollution. Again, these findings are 

remarkably stable and are not affected by the inclusion of different controls and alternative ways to 

estimate the RD coefficient and standard errors.  

For comparison Table 4 presents the OLS estimates. The dependent variable in Panel A is overall 

mortality. In column (1), we run a single variable regression in which AQI is the only explanatory 

variable. The estimate 0.016 in column (1) implies that a 10-point increase in AQI is associated with a 

1.6% increase in overall mortality. In columns (2), we include DSP location fixed effects in the 

regressions. In column (3), we add weather controls on top of DSP fixed effects. The addition of 

weather control significantly reduces the estimate to a much lower level: 0.06. The instability repeats 

in Panel B and Panel C where the dependent variables are respectively CVR mortality and non-CVR 

mortality. The fuzzy RD estimates, however, are more stable and considerably larger in magnitude 

than OLS estimates, suggesting OLS estimates are biased downward possibly due to omitted variable 

bias and/or measurement error.   

E. Robustness Checks  

In this section we investigate whether our main results are affected qualitatively by the decisions made 

in our study along several dimensions; these are available in the Appendix. First, we use the level of 

AQI and mortality rate as dependent variables and re-estimate the models. We take the log of mortality 

rates in the main tables because log transformation could reduce the influence of outliers which are 

not uncommon in weekly mortality rates. Appendix Table A5 has the results using the level instead of 

the logarithm of mortality rate as the dependent variable. In general, we find that results are similar in 

sign and magnitude to those in Tables 2 and 3.   

Second, we experiment with alternative ways to match between DSP locations and air pollution 

monitor sites. Appendix Table A6 examines the sensitivity of the results to other choices of acceptable 

distance from a DSP location to its nearest monitoring stations. Results show that the main findings 

are stable and not affected by our choice of tolerance distance of matching rules.   
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Third, we use southern cities to conduct a placebo test.16 Cities located to the south side of the  

Huai River do not provide free winter heating. We randomly assign fake winter heating starting dates 

(used by the northern cities) to southern cities and estimate the impact of the fake winter heating on 

both AQI and mortality rates. The results are in Appendix Table A7. None of the estimates is 

statistically significant at the conventional level. This provides supportive evidence for our overall 

empirical strategy.   

Finally, weather conditions are important confounding factors in our study because they may have 

a direct impact on health (Deschênes and Greenstone, 2011; Deschenes and Moretti, 2009). We want 

to make sure weather conditions are properly controlled and the functional form of weather variables 

is carefully considered in our analysis. The main specification controls for weather variables using the 

linear form. To make sure that the main results are not sensitive to different functional forms of 

weather controls, we experiment with high-order (up to 4th polynomial) weather controls and present 

the results in Appendix Table A8. We find the RD estimates with high-order weather controls are 

consistent with the main results.   

F. Comparison with Related Studies in the Literature  

Existing epidemiological estimates largely focus on individual air pollutants such as PM2.5 instead of 

an index like the AQI. The AQI is calculated based on the maximum pollutant concentrations among 

the six criteria air pollutants (Appendix Table A2). In calculating the AQI, the primary pollutant is 

defined as the one with the maximum concentrations. During our sample period, PM2.5 is the primary 

pollutant over 90% of the time. Presumably, the health impact of the AQI are mostly driven by the 

primary pollutant (i.e., PM2.5). Therefore, we replace the main explanatory variable, the AQI, by PM2.5 

concentrations to generate results that are comparable to other relevant studies.17    

Table 5 presents the fuzzy RD results using PM2.5 concentrations as the explanatory variable. The 

sign and magnitude of the estimates are consistent with those using the AQI. We focus on the 

 
16 We also conducted a difference-in-differences (DiD) analysis using southern cities as the control. However, we find 

that southern cities are very different from northern cities and neither the air pollution level nor the mortality rate is 

parallel before the winter heating period. This finding violates the identifying assumption of the DiD approach, so we 

did not include these results in the paper.   
17 Here we wish to caution readers that the PM2.5 results are only used for comparison purposes. Since burning coal 
produces multiple air pollutants including SO2, NOx, and particulates, only looking at PM2.5 may lead to biased estimates. 
For example, when PM2.5 is correlated with one or multiple other pollutants, focusing on PM2.5 only may result in bias. 
The direction of the bias depends on the sign of the correlation between the pollutants.  20 We list these studies in the 
Appendix Table A9.   
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biascorrected robust estimates in columns (2) and (4). We find that an additional 10 μg/m3 increase in 

PM2.5 concentration leads to a 2.5% increase in overall mortality rate and a 2.9% increase in 

cardiorespiratory mortality. However, we fail to find a significant impact on mortality from 

noncardiorespiratory diseases at conventional levels.   

Many epidemiological studies have assessed the short-term association between fine particulates 

and health outcomes. We compare our results with several studies in China, the United States, and 

other counties. Since the goal is not to conduct a comprehensive literature review on the estimates, 

we focus on time-series estimates published in recent years. 20 Zhou et al. (2015) examine the 

association between smog episodes and mortality in five cities and two rural counties in China in 2013. 

They find that a 10 μg/m3 increase in two-day average PM2.5 is associated with a 0.6-0.9% increase in 

all-cause mortality. Shang et al. (2013) review seven PM2.5 studies that focus on cities in China including 

Beijing, Shanghai, Guangzhou, Xi’an, Shenyang, and Chongqing. Their meta-analysis shows that a 10 

μg/m3 increase in PM2.5 concentrations is associated with a 0.5% increase in respiratory mortality and 

a 0.4% increase in cardiovascular mortality. Franklin et al. (2008) examine 27 U.S. communities 

between 1997 and 2002 and show that a 1.21% increase in all-cause mortality was associated with a 10 

μg/m3 increase in the previous day’s PM2.5 concentrations. Kloog et al. (2013) study the short-term 

effects of PM2.5 exposures on population mortality in Massachusetts in the United States, for the years 

2000–2008. The results show that for every 10 μg/m3 increase in PM2.5 exposure, PM-related mortality 

increases by 2.8%. Atkinson et al. (2014) conduct a review of global time-series studies of PM2.5 and 

mortality. Based upon 23 estimates for all-cause mortality, they show that a 10 μg/m3 increment in 

PM2.5 was associated with a 1.04% increase in the risk of death. The only economic study that we are 

aware of and that focuses on PM2.5 and mortality is Deryugina et al. (forthcoming). Using changes in 

wind directions as the instruments, they estimate that a 10 μg/m3 increase in PM2.5 is associated with 

1.8% increase in three-day mortality rate per million people aged 65+.   

Compared with past epidemiological studies in China, our estimates are substantially larger. Our 

results show that a 10 μg/m3 change in weekly average PM2.5 concentrations would lead to a 2.5% 

change in all-cause mortality. However, our estimate is similar in magnitude to Deryugina et al. 

(forthcoming). The finding that the causal estimate of the air pollution effect is larger than the 

associational estimate is consistent with several other quasi-experimental studies (e.g. Deryugina et al., 

forthcoming; He et al., 2016; Schlenker and Walker, 2016). This difference suggests that estimates 

derived from associational approaches can significantly under-estimate the health impact of air 
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pollution. This suggests that estimates derived from associational approaches may under-estimate the 

health impacts of air pollution.   

However, compared with long-term cohort studies of the effect of PM2.5 on mortality (Pope et al., 

2002; Pope et al., 2004), our estimates are smaller. In particular, Ebenstein et al. (2017) investigate the 

long-term effect of the Winter Heating Policy in China and estimate that a 10 μg/m3 increase in long-

term exposure to particulate matter (i.e., PM10) increases cardiorespiratory mortality by 8%, which is 

greater than the estimate in this study (PM2.5 accounts for roughly 70% of PM10 in our data). The 

comparison suggests long-term exposure to air pollution imposes a greater risk to people’s health than 

short-term exposure does.   

VI. Heterogeneity  

A. Rural-Urban Difference  

We first examine how the air pollution effect differs between rural and urban populations. There are 

several reasons why this heterogeneity is important. First, rural residents in China are substantially 

poorer than urban residents. As income levels play an important role in determining people’s 

avoidance behaviors and thus the actual air pollution exposure (Ito and Zhang, forthcoming; Sun et 

al., 2017), rural residents may be disproportionally affected by air pollution. Second, air pollution 

information is readily available in urban areas, but the same information is difficult to obtain in rural 

areas.18 As air pollution information is a key determinant of pollution avoidance and associated health 

impact (Barwick et al. (2019), we expect the air pollution effect to be larger in rural areas. Third, rural 

and poor residents often lack immediate access to emergency medical care. When the sudden spike in 

air pollution triggers strokes, heart attacks, or acute respiratory diseases, they can be more likely to die 

due to lack of immediate medical treatment.19 Finally, due to the nature of the work, people working 

in rural areas have to spend more time outdoors (e.g. work on the field). The total exposure to air 

pollution of rural residents may be significantly higher than that of urban residents.  

 
18 For remote rural counties, there is simply no air quality monitoring station. For rural counties close to major cities, the 

residents can theoretically obtain such information from their nearest urban cities, but doing so requires them to have 

internet/mobile phone connection, which again is costly with their low income levels.   
19 Cheung et al. (2019) study Hong Kong and find that the air pollution effect has dramatically decreased due to the 

improvement in the quality of medical services and the availability of emergency service is important.   
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Table 6 summarizes our findings.20 We start with the urban population in Panel A; columns (1) 

and (2) report the RD estimates for AQI; columns (3) and (4) report the RD estimates for mortality; 

and finally columns (5) and (6) summarize the estimates of the impact of AQI on mortality. We find 

that winter heating increases both AQI and mortality; this is consistent with our baseline results. A 10-

point increase in AQI increases urban mortality by 2.3% for the urban population. In Panel B, we 

report the results for rural populations. Here there are two findings. First, air quality immediately 

deteriorated after the heating season began in rural areas, but the change is less dramatic than that in 

urban areas. This pattern is consistent with air quality changes in rural areas being driven by 

transboundary pollution from the urban winter heating system, and the air pollutants can be dispersed 

as they travel. Second element of Panel B is that air pollution has a much greater impact on people’s 

health in rural areas than in urban areas. A 10-point increase in AQI will lead to a 9.3% increase in 

weekly mortality in rural areas, which is more than three times larger than its impact on urban areas.  

The rural-urban heterogeneity suggests an important inequality that is largely overlooked in the 

literature; the winter heating subsidy is a welfare system that mainly serves urban populations, but in 

rural areas it causes a sudden increase in air pollution that inflicts a very substantial deterioration in 

the physical well-being of the adjacent rural population.   

 One may be concerned that the urban-rural heterogeneity is driven by the winter heating system itself, 

rather than by income or other channels. As urban people could enjoy the warmer indoor temperature 

brought by the heating system, this “protective” effect of heating may be large enough to offset the 

air pollution effect, resulting in a much smaller estimated coefficient using the urban sample. To test 

this hypothesis, we further divide the urban sample into two equal-size sub-samples based on their 

GDP per capita in 2014 and estimate the winter heating impact separately for rich and poor urban 

populations. As reported in Panel C of Table 6, we find that people living in low-income urban areas, 

who should enjoy the same level of “protection” against cold from the heating system as the richer 

urban people do, suffer from a greater increase in mortality rate at the onset of winter heating. This 

comparison exclude the conjecture that the protective effect of winter heating drives the differences 

 
20 We use the urban/rural definition by the Chinses CDC to create urban and rural subsamples for Table 6. However, 
some counties are similar to urban areas because the majority of its population live in the county capital. To address this 
concern, we categorize some CDC designated rural areas as an urban area because they have a large share of urban 
population (e.g., the share of urban Hukou holders is higher than 0.5) in a robustness check. In other words, all rural 
counties with more urban Hukou holders are treated as urban areas. We re-estimated the model and the results are similar 
to those in Table 6. Results are available upon request.   
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between urban and rural areas and supports the argument that better socio-economic conditions could 

mitigate the effects of air pollution..  

B. Effects by Gender and Age Group  

We examine the gender difference in Panel A of Table 7. Columns (1)-(3) summarize the RD estimates 

of winter heating on mortality, and column (4)-(6) summarize the fuzzy RD estimates of AQI on 

mortality. We find that the winter heating has a positive and statistically significant impact on mortality 

rates for both men and women and the effect size is also similar. We estimate that the increase in 

mortality at the threshold is around 14% and 13% (statistically significant) for females and males 

respectively. A 10-unit increase in AQI will increase the mortality rate for males and females by 2.9 

and 2.4% respectively. The results indicate that men and women are equally likely to die when they 

suffer from a sudden increase in air pollution.   

Second, in Panel B of Table 7, we investigate the impact of winter heating on mortality for 

different age groups. Our results show that the elderly suffer from air pollution resulting from winter 

heating. The results indicate that winter heating increases mortality rates by 16% for people older than 

60 (column (3)). In contrast, the magnitude of the estimates is much smaller and statistically 

insignificant for the young group. It is not unreasonable for us to find no impact on young people 

because we are evaluating the impact of air pollution in a short period of time and young adults are 

more resilient to short-term air pollution. Based on fuzzy RD results, a 10-unit increase in AQI will 

increase the mortality rate by 2.5% for the elderly.   

VII. Benefits and Costs of Replacing Coal with Natural Gas for Winter Heating  

To deal with the severe air pollution during the winter heating season and its negative health 

consequences, the Chinese government has initiated ambitious clean energy programs that are meant 

to gradually replace coal with natural gas (or electricity in some regions) for winter heating. The coal 

replacement policy was first piloted in Beijing from 2014 and was later extended to multiple provinces 

in northern China. In the winter of 2017, Beijing and many cities nearby completely banned coal use 

for heating and are required to use natural gas instead. It turns out that the coal replacement policy 

was immediately effective in reducing air pollution. For example, compared to the air pollution levels 

in 2014, the mean PM2.5 concentrations in December 2017 was reduced by 50% in Beijing.   
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Yet, the coal replacement policy is controversial. China is abundant in coal but lacks a large supply 

of natural gas. Almost 40% of China’s natural gas is imported and it is expected that China will import 

an even larger share in the future (IEA, 2017). Critics argue that a wholesale substitution of coal with 

natural gas would cause natural gas shortages in China (or possibly internationally), threatening China’s 

energy security. People are also worried that the unstable supply of natural gas may expose themselves 

to extreme cold, despite that the Chinese government has prioritized household-use natural gas over 

industrial and other uses.21 Concerns are further raised because the higher prices of natural gas will 

impose hardships on the poor. Critics argue that governments provided subsidies for natural gas are 

inadequate, and that Beijing’s blue skies were at the cost of the poor.    

Despite these concerns, Chinese governments are working to increase the replacement of coal 

with cleaner energy. According to the “Clean Energy Plan for Winter Heating in Northern China, 

2017-2021” from the Ministry of Environmental Protection of China, by 2021 more than 150 million 

tons of winter-heating coal will be replaced and more than 90% of heating boilers will use cleaner 

energy such as natural gas or electricity. 22 Beijing, Tianjin and twenty-six other major northern Chinese 

cities are required to implement the Clean Energy Plan. The substitution of cleaner energy for coal 

may bring about significant health benefits, but the change has costs. Here, we aim to provide some 

back-of-the-envelope calculations on the benefits and costs of the policy, using our air pollution effect 

estimates. While a number of critical assumptions have to be made for such calculations, this 

exploratory analysis sheds light on the range and magnitude of the costs and benefits of replacing coal 

with natural gas.  

A. Averted Deaths from Cleaner Air and Its Values   

For the benefit estimate, we need to estimate the number of averted premature deaths by the 

substitution of natural gas for coal and assign a value to life. We compare the AQI values between 

northern and southern DSP locations during the winter. Using the most common winter heating 

period from November 15th, 2014 to March 15th, 2015, we find that the average AQI in northern China 

 
21 In the winter of 2017, China faced a serious gas shortage because of the coal ban. People in several cities claimed that 

they had to suffer from cold due to lack of stable supply of natural gas. The MEP then directed local governments to lift 

the coal ban and allow households to use coals if the supply of natural gas was not sufficient.   

See for example: https://www.ft.com/content/6fbc6dac-db13-11e7-a039-c64b1c09b482.   
22 The plan is described here: http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm.   

http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm
http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm
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was 37.6 units higher than that of southern China.23 We estimate that a 10-point increase in the AQI 

results in a 2.2% increase in the weekly all-cause mortality rate using the full sample. Given that the 

age-adjusted mortality rate per 100,000 is 10.98 in our sample and there are 617 million residents living 

to in the 13 provinces in our study, a crude calculation indicates that 89,664 premature deaths per 

winter could be avoided if northern residents were not exposed to the extra air pollution caused by 

burning coal.24   

There are three critical assumptions in this calculation. First, the RD estimates of the air pollution 

effects can be applied to the whole winter heating season. Second, differences between northern China 

and southern China’s air pollution levels during the heating season are entirely driven by the winter 

heating system. Third, natural gas and coal provide the same level of warmth to households, so the 

averted deaths can be exclusively attributed to reduced air pollution. We acknowledge that all three 

assumptions can be overly strong, but the advantage is that they make the benefit estimation 

straightforward.   

We explicitly differentiate between “deaths caused by higher levels of air pollution” and “deaths 

caused by winter heating.” The associated counterfactual question we ask is: “what would happen if 

the level of air pollution caused by the heating system goes down by using cleaner fuel?” not “what 

would happen if winter heating system does not exist at all?” This differentiation is important because 

the “protective” effect of winter heating, which is not quite relevant just before and after the turningon 

dates, can become crucial when the temperatures become very low. What is captured by our RD 

estimate is the air pollution effect caused by the winter heating system when the temperature is held 

constant. We reason that replacing coal with natural gas will only affect the pollution: we assume that 

coal and gas can provide the same level of warmth during winters.  

Using the value of a statistical life (VSL), expressed as the amount of money that people are willing 

to pay to reduce their risk of dying, we provide estimates on the monetary value of the averted deaths. 

Qin et al. (2013) is the only study that estimates the VSL for the Chinese at the national scale and, 

separately, for urban and rural residents. Using China’s 2005 Census data, Qin et al. (2013) estimate 

 
23 In table 2, we show that winter heating increase the AQI level by 40 units. This suggest that winter heating is a major 

contributor of the north-south difference in air quality.  
24 We use 2010 China Census to calculate the population and households in 13 provinces in the sample. Those provinces 
include Anhui, Beijing, Hebei, Heilongjiang, Henan, Inner Mogolia, Jiangsu, Jilin, Liaoning, Shaanxi, Shandong, Shanxi, 
and Tianjin. We calculate the averted deaths as follows: mortality rate×population in 13 northern provinces×pollution 
effect on mortality×south-north difference in AQI×weeks in the heating season. We use 16 weeks (from November 15th 
to March 15th) as the heating season.   
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that the VSL using the national sample is about 1.81 million Chinese Yuan (CNY). Note that these 

values were derived from 2005 data. As incomes rise, the VSL in Chian rises. We follow the guidelines 

of OECD (2012) and use an income elasticity of 0.9 for mid-income countries to adjust the VSL. 

From 2005 to 2015, China’s per capita GDP has increased from 1,753 USD to 8,033 USD, a 358% 

rise in relative scale. That implies that the average VSL of a typical Chinese would be around 7.46 

million CNY or 1.15 million USD in 2015.25 In comparison, the VSL of an average American is 

between 6 million and 10 million USD (Doucouliagos et al., 2014), which is five to nine times higher 

than our calculation. We consider the calculations of the VSL as reasonable as per capita GDP in the 

United States was approximately seven times as large as China in 2015.29 This approximates the 

multiple of the American VSL over the Chinese.   

Table 8 summarizes our benefit calculations. We first monetarize the benefit of averted premature 

deaths. Recall that there are an estimated 89,664 more deaths per year as a result of heating with coal; 

If we use 7.46 million CNY as the VSL for an average Chinese, the total monetary value of 89,664 

averted deaths will be converted to about 669 billion CNY or 103 billion USD. We further discount 

the benefits based on the empirical results that only old people suffered from higher mortality rates. 

In the literature, discounting VSL is controversial as it assigns different monetary values to different 

age groups (see Aldy and Viscusi (2007) for more discussions). Leaving aside this controversy, here 

we discount the VSL of the elderly at 30%; this provides a lower and more conservative estimate fo 

the benefits.26 This gives us an annual benefit estimate of 469 billion CNY or 72 billion USD.   

Aside from averted premature deaths, improved air quality will also reduces morbidity and 

defensive expenditures, however, these benefits are genrally smaller. We utilize estimates from the 

literature to quantify the benefits of reduced morbidity and defensive expenditures. Barwick et al. 

(2018) estimate that a reduction of 10 µg/m3 in PM2.5 leads to total annual savings of 9 billion USD in 

health spending in China, implying that 3.6 billion USD can be saved in medical spending if northern 

China’s air quality becomes similar to southern China’s during the winter season. Ito and Zhang 

(forthcoming) use air filter sales data to estimate the Willingness to Pay (WTP) for clean air and find 

 
25 Throughout the paper, we use the annual average exchange rate between dollar and CNY in 2015: 1 dollar for 6.5 

CNY. The average Chinese VSL in 2015 is calculated as:1.81*0.9*8033/1753=7.46 million CNY (1.15 million dollars).  29 

Per capita GDP in each county is from World Bank national accounts data and OECD National Accounts data which 

are available at https://data.worldbank.org/indicator/NY.GDP.PCAP.CD.   
26 Discounting VSL by age is controversial in the literature and our estimates should be interpreted with caution. In a 

2000 analysis for the Canadian government (Hara and Associates Inc., 2000), the VSL used for the over-65 population 

was 25% lower than the VSL for the under-65 population. When the US Environmental Protection Agency (EPA, 2003)  
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that in northern China a household is willing to pay about 32.7 USD per year for clean air. Aggregating 

over the relevant population and average household size, this amounts to approximately 1.75 billion 

USD per winter. These estimates aggregate to a total benefit for the reduction in air pollution of at 

least 5.35 billion USD per winter.   

Note that the estimates of benefits above are based on the short-term impact of air pollution. In 

the long run, exposure to air pollution leads to the development of chronic diseases and decreases the 

life expectancy of northern residents. Ebenstein et al. (2017) estimate that air pollution from the 

heating systems reduces life expectancy by 3.1 years for northern residents. The life expectancy in 

China is 76 years. That implies that each year a northern resident loses 3.1/76 years of life expectancy 

due to air pollution from the heating boilers. The gain in life expectancy would be approximately 25.5 

million life-years for northern residents if coal is replaced by natural gas. Using the same VSL, we can 

calculate the value of per life-year: 5.83million/76 years = 76.7 thousand CNY. We estimate that the 

monetary benefit in terms of gains in life expectancy is 1,956 billion CNY (301 billion USD) per year. 

In conclusion, the long-run benefits of improving air quality is substantially higher than the short-run 

benefits.   

B. Cost of Replacing Coal with Natural Gas  

The cost of replacing coal with natural gas includes two main components: 1) expenditures on new 

stoves and pipelines, and 2) operational expenditures (higher fuel cost and maintenance).31 To the best 

of our knowledge, the Chinese government did not provide a total cost estimate for the clean  

                                                  
prepared an illustrative analysis of the Clear Skies Initiative in which it used a VSL estimate for those aged 65 and older 

that was 37% lower than for those aged 18–64. More generally, European Commission (2001) recommended that its 

member countries value benefits using VSL levels that decline steadily with age.  
31 Pipeline constructions and new stove installations are heavily subsidized by Chinese governments. Households only 

pay a negligible amount for replacing their coal-fired stoves. In contrast, households are responsible for covering most 

of the fuel cost despite subsidies.  
energy plans. This presents some challenges for our analysis, as we do not have accurate numbers for 

some important cost components. In the following analysis, we make several assumptions to simplify 

the calculation. First, we assume that the change in operational and maintenance costs from coal-fired 

to gas-fired stoves is negligible. 27  Under the assumption of equal maintenance costs, then the 

 
27 In practice, the cost to maintain gas-fired stoves can be slightly higher because they are technically more complicated.  
33 Local governments often provide subsidies to households to help them reduce the burden of higher fuel cost. The 
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increased fuel cost and infrastructure investments are major costs involved in switching to natural gas. 

Second, we borrow estimates for fuel costs from survey data collected by a research team from Renmin 

University and apply them to all of northern China (Xie et al., 2018). Third, we use Beijing’s “Coal to 

Gas” project approved by the Asian Infrastructure Investment Bank (AIIB) to estimate the total cost 

of the required infrastructure and assume a life expectancy of 20 years of the facility.  

Xie et al. (2018) conducted a comprehensive survey in a community (660 households) in Beijing 

and collected detailed information about the costs of replacing coal with natural gas. The community 

replaced coal-based heating systems with gas-based ones in 2017. According to the survey, the average 

annual fuel cost for natural gas is around 7,000 CNY for each household for the winter (including 

government subsidy), which is approximately 3,000 CNY more than the costs of using coal.33 We also 

collect data from multiple news article reports in which households were interviewed. Based on the 

news reports, an average household with a 100 square meters house would spend 2,000 to 4,000 CNY 

more using natural gas during the 2017 winter.28 The 13 northern provinces have approximately 214 

million households. If all of them substitute natural gas for coal, then the total increased fuel cost will 

be approximately 642 billion (=3000×214 million) CNY or 98.8 billion USD every year.   

For infrastructure cost, the Beijing municipal government submitted a project proposal to the  

Asian Infrastructure Investment Bank (AIIB) to request a loan for implementing Beijing’s 2017-2020 

Rural “Coal-to-Gas” Program in 2017.29 According to this plan, to install natural gas infrastructure for 

216,751 user households in 510 villages during 2017-2020, Beijing will require a total of 3,318.48 

million CNY to cover pipelines and meters. We assume that the equipment lasts for 20 years with a 

6% interest rate; then the annual fixed cost is 285.24 million CNY for 216,751 households. Based on 

the cost estimation of the pipeline construction in Beijing, installing natural gas infrastructure for 214 

million northern households will cost approximately 282 billion CNY or 43 billion USD every year.   

Installing a new gas stove for each household costs an additional from 5,000 to 10,000 CNY. If 

we assume the same life expectancy for gas stove and the same interest rate, the annual costs range 

from 430 to 860 CNY. In total, new stove expenditures will amount to 92 billion to 184 billion CNY 

 
amount of the subsidy varies across different cities, with the average being about 1,000–1,200 CNY per season per 
household.   
28 For example: http://www.qdaily.com/articles/48092.html and 

http://news.dichan.sina.com.cn/2017/09/07/1248573.html.  
29 The detailed project description can be found on the AIIB’s website:  

https://www.aiib.org/en/projects/approved/2017/air-quality-improvement-coal-replacement.html.   

The estimates of the total cost are described in the Environmental and Social Management Plan:   

https://www.aiib.org/en/projects/approved/2017/_download/beijing/environment-social-management-plan.pdf  
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or 14 billion to 28 billion USD per year. Adding these cost estimates gives us a rough estimate of the 

total cost of replacing coal with natural gas; the cost estimates range from 1,016 billion to 1,108 billion 

CNY (or 156 billion to 170 billion USD) each year to use natural gas for winter heating.   

Comparing cost estimates with the benefit estimates, we see that the costs of replacing coal with 

natural gas (156 billion to 170 billion USD) are greater than the benefits (77.35 billion USD) in the 

short term; but the long-run health benefits (301 billion USD) still significantly outweigh the costs. In 

conclusion, policymakers should anticipate potential backlash in implementing these changes because 

the costs of the switch are quite substantial and it takes a long period to reap the total benefits of 

lowering air pollution.   

C. Potential Biases  

One should interpret the cost and benefit estimates with caution because the data available are 

incomplete and we rely on a number of assumptions that may overly simplify real-world situations. In 

particular, mortality displacement, economic growth, and other factors relating to benefit analyses may 

affect our estimates of the impact of air pollution.   

First, mortality displacement (also referred to as harvesting effect) denotes a temporary increase 

in the mortality rate (number of deaths) that is attributable to a sudden deterioration of air quality. 

After some periods with excess mortality, the overall mortality may decline during the subsequent days 

or weeks, because the most vulnerable groups have died. However, existing evidence in the literature 

does not support this argument. In the environmental epidemiology literature, a large number of 

studies have examined the dynamic pattern of mortality response to air pollution and the general 

finding is that air pollution-induced deaths cannot be attributed to temporal mortality replacement 

(Zanobetti and Schwartz, 2008; Zanobetti et al., 2002; Zanobetti et al., 2000). Notably, when one 

includes the lagged pollution measure in the time-series regressions or when one uses more aggregated 

outcome measures (from daily to weekly, monthly, or yearly), the estimated effect of air pollution 

actually becomes stronger rather than weaker. In other words, the short-term estimates tend to 

underestimate, instead of overestimating the health effect of air pollution.   

Second, the rate of economic growth will positively affect the VSL. As people become richer, the 

willingness to pay for clean air and their VSL will increase. Air pollution also affects agricultural yields, 

labor productivity, and tourism; these factors would further increase the benefits of clean air. World 

Bank (2016) estimates that exposure to ambient and household air pollution causes enormous welfare 
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losses amounting to as much as 7.5 percent of GDP in East Asia; consequently, using these estimates 

yields greater benefits.   

On the cost side, estimates are sensitive to the price of natural gas. The Chinese natural gas market 

is still embryonic, changing from a regime of regulated prices to a market-based price system during 

the 12th Five-Year Plan period (2011-2015). Market mechanisms are new to both governments and 

natural gas suppliers; currently, the expansion of natural gas consumption still faces significant 

economic and institutional barriers. The natural gas shortage of the winter of 2017 shows that the 

market mechanism is far from mature. If in the future the greater demand for natural gas drives up its 

price, the cost of replacing coal with natural gas will be higher still. In that case, poor households and 

rural households may become unable to afford cleaner energy. Appropriate governmental policies may 

be able to alleviate these possible problems and resources should be used to explore ways to ameliorate 

the problems faced by the poor in the switch to natural gas.  

VIII. Conclusion  

This paper utilizes China’s winter heating policy as an RD design to evaluate the contemporaneous 

effect of air pollution on mortality. We examined the changes in air quality and mortality at the onset 

of winter heating and find that the increased air pollution caused by turning on winter heating results 

in higher mortality rates in northern China. Heterogeneity analyses show that elevated air pollution 

has greater impact on poor and rural residents than on their richer and urban counterparts and is more 

harmful to old people.   

The results provide the first evidence of the impact of the periodic increases in air pollution caused 

by winter heating. We show that air pollution imposes more significant health risks on poor/rural 

people relative to rich/urban people. Failure to take the disparities in pollution effects into account 

when making environmental policies may result in significant welfare losses. More than half of the 

world’s population lives in rural areas where accurate air quality information is largely nonexistent. 

More broadly, this suggests that policies that move polluting firms or industries from urban areas to 

rural areas need to be re-assessed, as the impact of air pollution can be greater in rural areas.   

Chinese governments have planned to convert coal to gas for winter heating to reduce air pollution in 

northern China by 2021. Even though the energy transition in Beijing effectively reduced air pollution, 

the policy is still controversial and the public questions whether the benefits are worth the costs. 

Combining findings from this study and several other studies, we provide back-of-the envelope 
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calculations on the benefits and costs of the policy. Our exploratory analyses show that while the long-

term health benefits still outweigh the costs, the short-term benefits are lower than the costs. We thus 

recommend the government adopt a “gradual” reform, prioritizing regions with higher income and 

willingness to pay for clean air when making the transition.    
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Table 1. Summary Statistics  

    Mean  Std. Dev.  Min  Max  

      Obs.    (1)  (2)   (3)   (4)   

Mortality  3,647  10.98  3.82  1.20  54.56  

Urban  1,344  10.43  3.40  3.14  44.70  

Rural  2,303  11.30  4.02  1.20  54.56  

CVR  3,647  7.92  3.07  0.61  37.38  

Non-CVR  3,647  3.05  1.43  0.00  19.47  

AQI  3,647  109.24  45.44  7.04  301.51  

Urban  1,344  104.24  44.24  18.20  301.51  

Rural  2,303  112.16  45.89  7.04  300.40  

PM2.5 (µg/m3)  3,645  75.95  39.85  5.04  279.23  

Temperature  3,647  49.31  19.84  -6.11  87.41  

Dew Point  3,647  34.80  23.15  -17.56  76.73  

Precipitation  3,647  0.06  0.13  0.00  1.49  

Notes: Variables are observed at the county (city district) and week level. Mortality data are from  

China's Disease Surveillance Points (DSP) System. Air quality data are from the National RealTime 
Air Quality Platform. Weather information is from Global Summary of the Day. Mortality is age-
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adjusted mortality per 100K. Temperature and dew point are in Fahrenheit. Precipitation is in 
inches. The full sample includes 114 northern Chinese cities/counties.   

  

  

  

  

  

  

  

  

Panel A: Winter Heating and AQI        

     AQI   

 Heating On  30.4**   20.5**  40.0**  43.3**  

   (7.3)    (6.5)  (6.8)  (5.7)  

 Bandwidth (Left)  2.67    2.35  1.96  1.96  

 Bandwidth (Right)      1.63    1.69   3.95   3.95   

Panel B: Winter Heating and Mortality       

     Overall Mortality (log)   

 Heating On  0.124**   0.134**  0.138**  0.127**  

   (0.041)   (0.036)  (0.035)  (0.031)  

 Bandwidth (Left)  2.81    2.59  2.89  2.89  

 Bandwidth (Right)  6.00    5.40  5.32  5.32  

                

Panel C: Winter Heating and CVR Mortality     
  

     CVR Mortality (log)   

 Heating On  0.135**   0.157**  0.154**  0.141**  

    (0.045)   (0.040)  (0.038)  (0.032)  
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Table 2. RD Estimates of the Impacts of Winter Heating on AQI and Mortality  

    

    (1)  

RD Estimates   

(2)  (3)  (4)  

Notes: Each cell in the table represents a separate RD estimate. The discontinuities are estimated 
using local linear regressions and MSE-optimal bandwidth selectors proposed by Calonico et al. 
(2014) and Calonico (2019). Weather controls include temperature, relative humidity, and 
precipitation. Standard errors clustered at the (DSP) county level are reported below the 
coefficients. * significant at 5% ** significant at 1%.   

  

Table 3. Fuzzy RD Estimates on the Impacts of the AQI on Mortality     

   
Mortality (log)   

  
 
      (1)  (2)   (3)   (4)   

Panel A: Impact of the AQI on Mortality    AQI (per 

10 points)  0.026**  0.034**  

  

0.022**  

  

0.020**  

   (0.008)  (0.010)  (0.007)  (0.006)  

 Bandwidth (Left)  2.69  2.08  3.03  3.03  

  Bandwidth (Right)      4.40  3.84   3.53   3.53   

Panel B: Impact of the AQI on CVR Mortality    

 AQI (per 10 points)  0.037**  0.040**  

  

0.027**  

  

0.024**  

 Bandwidth (Left)  2.72    2.44  2.79  2.79  

 Bandwidth (Right)  5.20    4.66  4.81  4.81  

                

Panel D: Winter Heating and Non-CVR Mortality     
  

     Non-CVR Mortality (log)   

 Heating On  0.086    0.079  0.076  0.070  

    (0.050)   (0.045)  (0.046)  (0.039)  

 Bandwidth (Left)  3.57    3.38  3.41  3.41  

  Bandwidth (Right)      4.94    4.47   4.14   4.14   

  RD Estimates  

Bias-Cor. 

Robust  

Bias-Cor. 

Robust  

Bias-Cor. 

Robust  Conventional  

 Weather Controls  N  N  Y  Y  

 DSP Fixed Effects  N  Y  Y  Y  

 Kernel  Epanech.  Epanech.  Epanech.  Epanech.  

 Observations  3,647  3,647  3,647  3,647  
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   (0.011)  (0.011)  (0.008)  (0.007)  

 Bandwidth (Left)  2.52  1.90  2.89  2.89  

  Bandwidth (Right)      4.42  3.76   3.45   3.45   

Panel C: Impact of the AQI on Non 

AQI (per 10 points)  

CVR Mortality  

0.012  

  

0.015  0.010  

  

0.010  

   (0.010)  (0.013)  (0.009)  (0.007)  

 Bandwidth (Left)  2.99  2.52  3.06  3.06  

 Bandwidth (Right)  4.17  3.51  3.56  3.56  

 
 
    

 RD Estimates  
Bias-Cor. 

Robust  

  

Bias-Cor.  

Robust  

  

Bias-Cor.  

Robust  

  

Conventional  

 Weather Controls  N  N  Y  Y  

 DSP Fixed Effects  N  Y  Y  Y  

 Kernel  Epanech.  Epanech.  Epanech.  Epanech.  

Observations  3,647  3,647  3,647  3,647  

Notes: Each cell in the table represents a separate fuzzy RD estimate. The discontinuities are 
estimated using local linear regressions and MSE-optimal bandwidth selectors proposed by 
Calonico et al. (2014) and Calonico (2019). Weather controls include temperature, relative 
humidity, and precipitation. Standard errors clustered at the (DSP) county level are reported below 
the coefficients. * significant at 5% ** significant at 1%.   

  

  

Table 4. OLS Estimates on the Association between the AQI and Mortality  

   

  
 
      

 Overall Mortality (log)   

(1)  (2)   (3)   

Panel A. Overall Mortality    

 AQI (per 10 points)  0.016**  

  

0.018**  

  

0.006**  

   (0.002)  (0.002)  (0.001)  

 R -Squared    0.062   0.307    0.390    

Panel B. CVR Mortality    

 AQI (per 10 points)  0.020**  

  

0.022**  

  

0.008**  

   (0.002)  (0.002)  (0.001)  

 R -Squared    0.082   0.327    0.431    

Panel C. Non-CVR Mortality    

 AQI (per 10 points)  0.003  

  

0.004**  

  

0.000  

   (0.002)  (0.001)  (0.002)  

  R -Squared    0.002   0.335    0.341    

 Weather Controls  N  N  Y  

 DSP Fixed Effects  N  Y  Y  

Observations  3,647  3,647  3,647  
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Notes: Each cell in the table represents a separate OLS regression. Weather controls include 
temperature, relative humidity, and precipitation. Standard errors clustered at the (DSP) county 
level are reported below the coefficients. * significant at 5% ** significant at 1%.  
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Table 5. The Impacts of PM2.5 on Mortality (Log)  
            

      

        (5)  (6)  

 PM2.5 (per 10 µg/m3)  0.023**  0.025**    0.027**  0.029**    0.012  0.013  

  (0.006) (0.007)  (0.007) (0.008)  (0.007) (0.009)  Bandwidth (Left) 2.60 3.04  2.48 2.89  3.54 3.10   
 Bandwidth (Right)      4.31  3.81   

 
  4.55     3.88   

 
  4.15    4.13  

 

 RD Estimates  Conv.  Bias-Cor. Robust    Conv.  Bias-Cor. Robust   Conv.  Bias-Cor. Robust  

Notes: Each cell in the table represents a separate RD estimate. All regressions control for weather conditions (temperature, relative 
humidity, and precipitation) and DSP fixed effects. The discontinuities are estimated using local linear regressions and two different 
MSE-optimal bandwidth selectors proposed by Calonico et al. (2014) and Calonico (2019). Standard errors clustered at the (DSP) county 
level are reported below the coefficients. * significant at 5% ** significant at 1%.  

  

  Kernel    Epanech. 

   

 Epanech.       Epanech. 

     

Epanech.     

  

Epanech.  

  

Epanech.  

 Weather Controls  Y  Y    Y   Y     Y   Y  

 DSP Fixed Effects  Y  Y    Y   Y     Y   Y  

 Kernel  Epanech.  Epanech.    Epanech.   Epanech.     Epanech.   Epanech.  

 Observations  3,645  3,645    3,645   3,645     3,645   3,645  

  Mortality (log)   CVR Mortality (log)   Non - CVR Mortality (log)   
      (1)   (2)   (3)   (4)   
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Table 6. Heterogeneous Impacts of Winter Heating and AQI: Urban vs. Rural and Across Income Groups  

 

    RD: AQI    RD: Mortality (log)    Impact of AQI on Mortality  

    (1)   (2)    (3)   (4)    (5)  (6)  

    

Panel A: Urban Areas    

 All Urban  

   

49.7**  

     

    

 51.2**    

   

  

0.125*  

     

    

 0.139*    

   

  

0.022*  

   

  

0.023*  

    
   

(10.2)  

  
 (12.0)    

    
(0.049)  

  
 (0.058)    

    
(0.009)  

  
(0.011)  

  
  

Panel B: Rural Areas    

 All Rural  

  

37.0**  

  

    

 24.4**    

  

  

0.166**  

  

    

 0.168**    

  

  

0.068*  

  

  

0.093**  

   

   (6.5)   
 (7.6)    

    
(0.043)  

  
 (0.051)    

    
(0.028)  

  
(0.032)  

  
    

Panel C: Decomposing the Urban Results  

 High-Income Urban  37.4*  

  

  

 42.2*    

  

  

0.050  

  

    

 0.047    

  

  

0.014  

  

  

0.010  

    (16.6)   (19.6)    (0.057)   (0.066)    (0.017)  (0.021)  

 Low-Income Urban  61.6**   59.1**    0.184*   0.217*    0.024*  0.027*  

     (11.9)   (14.5)    (0.081)   (0.099)    (0.010)  (0.012)  

       
Conv.  

        
Conv.  

        
Conv.  

   
Bias-Cor. Robust  
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 RD Estimates   Bias-Cor. Robust    Bias-Cor. Robust    

 Weather Controls  Y   Y    Y   Y    Y  Y  

 DSP Fixed Effects  Y   Y    Y   Y    Y  Y  

 Kernel  Epanech.   Epanech.    Epanech.   Epanech.    Epanech.  Epanech.  

Notes: Each cell in the table represents a separate RD estimate. All regressions control for weather conditions (temperature, relative 
humidity, and precipitation) and DSP fixed effects. The discontinuities are estimated using local linear regressions and MSE-optimal 
bandwidth proposed by Calonico et al. (2014) and Calonico (2019). Panel A summarizes the results using urban population while Panel B 
reports the rural results. In Panel C, we further split the urban sample into two groups based on the median GDP per capita. Standard 
errors clustered at the DSP level are reported below the coefficients. * significant at 5% ** significant at 1%.  

  

Table 7. The Impacts of Winter Heating and AQI by Gender and Age Group  

 

   Impact of Winter Heating on Mortality    Impact of AQI on Mortality: Fuzzy RD  

  
 
      (1)   (2)      (3)   (4)   

Panel A: By Gender    

 Male  0.118**  

    

 0.125**    

  

0.026**  

  

0.029*  

   (0.035)   (0.040)    (0.010)  (0.012)  

 Female  0.136**   0.143**    0.023**  0.024*  

       

(0.043)   (0.051)   

    

(0.008)     (0.010)    

Panel B: By Age Group    

 Old People (>=60)  0.150**  

    

 0.158**    

  

0.024**  

  

0.025**  
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   (0.033)   (0.038)    (0.006)  (0.007)  

 Young People (<60)  0.058   0.063    0.012  0.013  

   (0.034)   (0.041)    (0.007)  (0.008)  

    

 RD Estimates  

   
Conv.  

     

Bias-Cor. Robust    

   
Conv.  

   
Bias-Cor. Robust  

 Weather Controls  Y   Y    Y  Y  

 DSP Fixed Effects  Y   Y    Y  Y  

 Kernel  Epanech.   Epanech.    Epanech.  Epanech.  

 Observations  3,645   3,645    3,645  3,645  

Notes: Each cell in the table represents a separate RD estimate. All regressions control for weather conditions (temperature, relative 
humidity, and precipitation) and DSP fixed effects. Columns (1) to (3) report the RD estimates using local linear regressions and two 
different MSE-optimal bandwidth selectors proposed by Calonico et al. (2014) and Calonico (2019). Columns (4) to (6) report the fuzzy 
RD estimates using the same methodology. Standard errors clustered at the DSP level are reported below the coefficients. * significant at 
5% ** significant at 1%.  
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Table 8. Estimated Benefit of Replacing Coal by Natural Gas For Winter Heating     
  

 
    Effect Size    Source    Costs/Benefits Calculation    Monetary Value 

   

Pane A. Short 

 Pre-

mature  

Deaths  

  

term Benefit  

A 10-point increase in the AQI 

would cause a 3.8% increase in 

weekly mortality.  

  

Self-calculation  

  

AQI difference between northern and 
southern China during the winter×the 
impact of AQI on mortality rate× population 
in 13 northern Chinese proinvces×16 
weeks×VSL (7.46 million CNY)×70% 
(discounted VSL for the elderly)×89,664 
premature deaths   
= 469 billion CNY  

  

72 billion USD   

Defensive  

Expenditures  

  

A northern household is 

willing to pay about 43 USD 

per year to clean the air.  

Ito and Zhang 

(forthcoming)  

32.7 USD per year×1/4 (for winter 

season)×households in 13 northern Chinese 

provinces = 1.75 billion USD  

1.75 billion USD  

Medical  

Expenditures  

  

A reduction of 10 µg/m3 in 

PM2.5 would lead to total 

annual savings of 11.7 billion 

USD.    

Barwick et al.  

(2018)  

  

9 billion USD×1/4 (winter season)×PM2.5 
difference between northern and southern 
China during the winter = 3.6 billion USD  

  

3.6 billion USD  

Total    

  

77.35 billion USD  

  

  

Panel B. Long-term Benefit  

 Life  Winter heating causes a 3.1- 

Expectancy  year loss in life expectancy for 

Northern Chinese people  

   

Ebenstein et al. 

(2017)  

  

Life years will be saved each year: 3.1  

Years/76 Years× population in 13 northern  

Chinese provinces×= 25.5 million years;  
Each life year worth: 5.83 million CNY/76 
years = 76.7 thousand CNY/year;   
Total benefit: 25.5 million×76.7 thousand = 

1,956 billion CNY/year  

  

266 billion USD  

  



 

41  
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Figure 1. RD Plot for AQI  

 

  

  

Notes: The figure shows the mean and 95% confidence interval of AQI across the DSP locations 
within a week. The solid line represents a quartic polynomial fit of AQI separately for each side of the 
threshold.  
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Figure 2. RD Plot for Mortality  

 

Notes: The figure shows the mean and 95% confidence interval of mortality rate across the DSP 
locations within a week. The solid line represents a quartic polynomial fit of mortality separately for 
each side of the threshold.  
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Figure 3. RD Plots for Cardiorespiratory and Non-Cardiorespiratory Mortality  
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Notes: The figure shows the mean and 95% confidence interval of CVR and non-CVR mortality rates 
across the DSP locations within a week. The solid line represents a quartic polynomial fit of CVR (or 
Non-CVR) mortality separately for each side of the threshold..  

Figure 4. RD Plots for Weather Conditions  
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Notes: Each figure shows the mean and 95% confidence interval of a weather variable across the DSP 
locations within a week. The solid line represents a quartic polynomial fit of each variable separately 
for each side of the threshold.  
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Online Appendix  

The Winter Choke: Coal-Fired Heating, Air Pollution, and Mortality in China  

  

A1.  Disease Surveillance Point System  

Our sample of mortality in China is taken from the Disease Surveillance Points (DSP) system 

administered by the Chinese Center for Disease Control and Prevention (CCDC). The system started 

in the late 1970s and was designed to monitor the health status of Chinese people in selected cities 

and counties because a mortality registration system for all 1.3 billion people was infeasible. In 1990, 

the system was expanded to 145 DSP locations in 31 provinces, based on random sampling to 

represent the whole population of China. In the early 2000s, the DSPS was overhauled and a new set 

of 161 DSPs were included in the system starting in 2003. The data quality since 2003 represents a 

significant improvement in data quality relative to earlier data collected by the DSP during the 1980s 

and 1990s. In 2013, the Chinese government decided to increase the DSP locations from 161 to 605 

to cover a population of 324 million people.   

Information on all deaths in the designated DSP locations is collected and reported to the 

DSPS. If the patient died in a health facility, there is a standard protocol for death registration and 

reporting. If the patient died at home, the attending doctor (e.g. a community doctor) will follow a 

standard procedure to fill out a death certificate and report the information to the DSPS. All reported 

death information is subject to strict quality control procedures for accuracy and completeness. We 

use 2014-2015 data made available to the research team for this project.  

    

A2.  Air Quality Index  

Air quality index (AQI) is a quantitative description of the air quality. It tells the public how polluted 

their air is, and what associated health effects might be a concern for them. The major pollutants 

involved in the analysis includes fine particulate matter (PM2.5), inhalable particles (PM10), sulfur 

dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO). All pollutants are 

measured in micrograms per cubic meter (μg/m3).  

 The scale of the AQI for an individual air pollutant is from 0 to 500. The goal is to convert the 

pollution concentrations into a number between 0 and 500. There are eight thresholds, 0, 20, 100, 150, 

200, 300, 400, and 500. Each threshold corresponds to a defined pollution concentration (See Table 
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A1). The pollution concentration between the thresholds is linearly interpolated using the following 

equation:   

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻 −𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃 =  (𝐶𝐶𝑃𝑃 −𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿  

𝐵𝐵𝑃𝑃𝐻𝐻𝐻𝐻 −𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿 

where  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃: individual air quality index for pollutant P.  

𝐶𝐶𝑃𝑃: the rounded concentration of pollutant P   

𝐵𝐵𝑃𝑃𝐻𝐻𝐻𝐻: the threshold greater than or equal to 𝐶𝐶𝑃𝑃  

𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿: the threshold less than or equal to 𝐶𝐶𝑃𝑃  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐻𝐻: the AQI corresponding to 𝐵𝐵𝑃𝑃𝐻𝐻𝐻𝐻  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿: the AQI corresponding to 𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿  

The index 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃 has a linear relationship with the concentration Cp, with 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝐵𝐵𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻−−𝐵𝐵𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 as the  

slope. The AQI is then determined by the pollutant with the highest index. The pollutant with the 

maximum individual air quality index (IAQI) is primary pollutant when AQI is greater than 50.    

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼1, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼3, … , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛}  

For example, if the PM2.5 AQI is 125, the PM10 AQI is 50, SO2 is 30, NOx is 50, and all other 

pollutants are less than 125, then the AQI is 125–determined ONLY by the concentration of PM2.5.   

The AQI focuses on health effects one may experience within a few hours or days after 

breathing polluted air. The AQI is divided into six levels in total, with Level one being the best and 

Level six being the worst. The Chinese government provides guidelines about the health implications 

at different levels (Table A2). For example, when the AQI level is between 51 and 100, the air quality  

2  

  

is considered “Good” and only hypersensitive individuals should reduce the time for outdoor activities.  



 

 

( μg/m 
3 

  

0   

Table A1. The Thresholds of Individual Air Quality Index             

IAQI  SO2  SO2  NO2  NO2  PM10  CO  CO   O3  O3  PM2.5  

24-hour  

Average  

1-hour  

Average  

24-hour  

Average  

1-hour  

Average  

24-hour  

Average  

24-hour  

Average  

1-hour  

Average  

1-hour  

Average  

8-hour  

Average  

24-hour  

Average  

   (μg/m3)  (μg/m3)  (μg/m3)  (μg/m3)  (μg/m3)  (μg/m3)  ) ) ) 

0  0  0  0  0  0  0  

50  50  150  40  100  50  2  5  160  100  35  

100  150  500  80  200  150  4  10  200  160  75  

150 475 650 180 700 250 14 35 300 215 115 200 800 800 280 1 200 350 24 60 400 265 150 300 1600 - 565 2 340 420 36 90 800 800 250  

400  2100  -  750  3 090  500  48  120  1000  -  350  

500  2620  -  940  3 840  600  60  150  1200  -  500  

( μg/m 
3 

  

0   



 

 

 

Source: Ministry of Environmental Protection of China.  

http://www.mee.gov.cn/gkml/hbb/bgth/201103/W020110301385498176520.pdf. Accessed on 07/28/2019.    
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Table A2. AQI and Health Implications  

AQI  Air Quality  Health Implications  

0–50  Excellent  No air pollution.  

51–100  Good  Hypersensitive individuals should reduce the time for outdoor 

activities.  

101–150  Lightly Polluted  Slight irritations may occur, children, and those who with 

breathing or heart problems should reduce outdoor exercise.  

151–200  Moderately Polluted  Irritations may occur, and it may have an impact on healthy 

people’s heart and / or respiratory system, so all people should 

reduce the time for outdoor exercise.  

201–300  Heavily Polluted  Healthy people will be noticeably affected. People with 

breathing or heart problems will lack exercise tolerance. Those 

patients, children and elders should remain indoors.  

300+  Severely Polluted  Even healthy people will lack endurance during activities. 

There may be strong irritations and symptoms. So all people 

should avoid outdoor activities.  

Source: Ministry of Environmental Protection of China.  

http://www.mee.gov.cn/gkml/hbb/bgth/201103/W020110301385498176520.pdf. Accessed on 

07/28/2019.    

  

  

  

  

  

  

Table A3. List of Winter Heating Starting Date  

Starting Date  Cities  

24-Sep  Daxing'anling  

26-Sep  Heihe  

29-Sep  Yichun  

30-Sep  Xilingol, Zhangye, Hami  

4-Oct  Ulanqab, Jixi, Wulanchabu,   

9-Oct  Baishan, Hegang, Shuangyashan, Daqing, Urumuqi, Changji, Bayingolin, Hetian  

13-Oct  Qiqihar  

14-Oct  Zhangjiakou, Hohhot, Baotou, Wuhai, Chifeng, Erdos, Bayannur, Hinggan, Alxa, 
Jiamusi, Qihetai, Mudanjiang, Suihua, Jiuquan, Xining, Haidong, Haibei,  

Huangnan, Guoluo, Yushu, Haixi, Bortala， Karamay, Huhehaote, Xinganmeng,   

19-Oct  Shuozhou, Tongliao, Liaoyuan, Haerbin, Guyuan  

22-Oct  Turpan  
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24-Oct  Datong, Changchun, Jilin, Siping, Songyuan, Baicheng  

25-Oct  Aksu  

26-Oct  Shizuishan  

27-Oct  Chengde  

29-Oct  Panjin  

30-Oct  Liaoyang  

31-Oct  Taiyuan, Yangquan, Jinzhong, Xinzhou, Linfen, Lvliang, Shenyang, Anshan,  

Fushun, Benxi, Dandong, Jinzhou, Yingkou, Fuxin, Tieling, Huludao, Tonghua, 

Lanzhou, Jiayunguan, Jinchang, Baiyin, Pingliang, Qingyang, Dingxi, Longnan, 

Yinchuan, Wuzhong, Zhongwei, Kashi, Yulin  

10-Oct  Longjin  

15-Oct  Hulunbuir, Yanji  

20-Oct  Dunhua  

1-Nov  Kangle  

4-Nov  Jincheng, Dalian, Chaoyang  

6-Nov  Weihai  

9-Nov  Hengshui, Jining, Taian, Lingyi  

11-Nov  Jinan, Liaocheng  

12-Nov  Laiwu  

13-Nov  Tianshui  

14-Nov  Weinan, Yan'an, Hanzhong, Shangluo, Zhengzhou, Kaifeng, Luoyang, Anyang, 

Hebi, Xinxiang, Jiaozuo, Puyang, Luohe, Sanmenxia, Nanyang, Shangqiu, 

Zhumadian,   

15-Nov  Hefei, Qingdao, Pingdingshan, Dingzhou, Jiyuan, Beijing, Tianjin, Shijiazhuang, 
Tangshan, Handan, Xingtai, Baoding,  Cangzhou, Langfang, Changzhi, Yuncheng,  
Huainan, Zibo, Dongying, Yantai, Weifang, Binzhou, Heze, Xian, Baoji,   

16-Nov  Wuhan  

22-Nov  Xuchang  

24-Nov  Rizhao  

30-Nov  Xuzhou  

Sources: Online information from local governments and various newspapers in 2012-2014.    

  

Table A4. Changes in Weather Conditions before and after Winter Heating Starts  

    
RD Estimates   

     (1)  (2)  (3)  (4)  

      

Panel A: Winter Heating and Temperature    

   Heating On  0.49  

  

1.02  

  

  

1.14  

  

  

0.73  



 

7  

  

   (0.66)  (0.66)  (0.63)  (0.71)  

Panel B: Winter Heating and Dew Point    

  Heating On  -0.69  -0.11  

 0.00   0.00  

    (0.80)  (0.80)  (0.00)  (0.00)  

Panel C: Winter Heating and 

  Heating On  

 Precipitation    

-0.11  -0.19  

  

-0.11  

  

-0.19  

     (0.08)  (0.10)  (0.08)  (0.10)  

      

  RD Estimates  Conventional  

 Bias-

Cor. Robust  

 

Conventional  
 Bias-

Cor. Robust  

  DSP Fixed Effects  Y  Y  Y  Y  

  Observations  3,647  3,647  3,647  3,647  

  Kernel  Epanech.  Epanech.  Triangle  Triangle  

Notes: Each cell in the table represents a separate RD estimate. The discontinuities are estimated using 
local linear regressions and MSE-optimal bandwidth selectors proposed by Calonico et al. (2014) and 
Calonico et al. (2019). Standard errors clustered at the (DSP) county level are reported below the 
coefficients. * significant at 5% ** significant at 1%.  

  

    

Table A5. RD Estimates of the Impacts of  Winter Heating on AQI and Mortality (Level)  

    
RD Estimates   

     (1)  (2)  (3)  

      

Panel A. Impact of Winter Heating on Mortality  

  Heating On  1.80**  

  

1.78**  

  

1.91**  

    (0.60)  (0.54)  (0.54)  

  Bandwidth (Left)  2.96  2.75  3.04  

  Bandwidth (Right)  

   

Panel B. Impact of Winter Heating on CVR  

4.17  

   

Mortality  

3.69  

   

3.59  

   

  Heating On  1.44**  1.46**  1.62**  

     (0.48)  (0.43)  (0.42)  

  Bandwidth (Left)  2.90  2.64  2.97  

  Bandwidth (Right)  

   

3.81  

   

3.38  

   

2.99  

   

Panel C. Impact of Winter Heating on Non-C VR Mortality  
  

  Heating On  0.45  0.42*  0.41*  

     (0.23)  (0.21)  (0.20)  

  Bandwidth (Left)  3.89  3.65  3.82  
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  Bandwidth (Right)  

   

Panel D. Impact of AQI on Mortality: Fuzzy   

5.25  

   

RD Estimates  

4.72  

   

4.36  

   

  AQI (per 10 points)  0.49**  0.52**  0.32**  

     (0.18)  (0.18)  (0.11)  

  Bandwidth (Left)  2.42  2.19  3.10  

  Bandwidth (Right)  

   

3.66  

   

3.29  

   

3.15  

   

Panel E. Impact of AQI on CVR Mortality: Fuzzy RD Estimates  

  PM2.5 (per 10 µg/m3)  0.56**  0.59**  0.36**  

     (0.19)  (0.20)  (0.12)  

Bandwidth (Left)  2.32  2.07  3.03  

  Bandwidth (Right)  3.81  3.16  2.78  

      

  RD Estimates  Bias-Cor. Robust  

  

Bias-Cor. Robust  

  

Bias-Cor. Robust  

  Weather Controls  N  N  Y  

  DSP Fixed Effects  N  Y  Y  

  Observations  3,647  3647  3,647  

  Kernel  Epanech.  Epanech.  Epanech.  

Notes: Each cell in the table represents a separate RD estimate. The discontinuities are estimated using 
local linear regressions and two different MSE-optimal bandwidth selectors proposed by Calonico et al.  
(2014) and Calonico (2019). Weather controls include temperature, relative humidity, and precipitation. 
Standard errors clustered at the (DSP) county level are reported below the coefficients. * significant at 
5% ** significant at 1%.  
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Table A6. Local Linear RD Estimates and IV estimates For Different Tolerance Distances  

    Different Tolerance Distances   

    75KM  100KM  125KM  150KM  

     (1)  (2)  (3)  (4)  

      

Panel A: RD Estimates of Winter Heating on AQI  

  Heating On  49.6**  

  

  

44.2**  

  

  

40.8**  

  

40.0**  

    (8.0)  

      

(7.5)  

  

(7.1)  

  

(6.8)  

  

Panel B: RD Estimates of Winter Heating on Mortality (log)  

  Heating On  0.178**  0.156**  

  

0.143**  0.138**  

    (0.037)  

      

(0.036)  

  

(0.036)  

  

(0.035)  

  

Panel C: Fuzzy RD Estimates of the Impact of AQI on Mortality (log)   

  AQI (per 10 points)  0.038**  0.025**  
  

0.023**  0.022**  

    (0.011)  (0.007)  

        

(0.007)  

  

(0.007)  

  

Panel D: Fuzzy RD Estimates of the Impact of AQI on CVR Mortality (log)   

  Heating On  0.031**  0.028**  
  

0.026**  0.027**  

    (0.008)  (0.007)  

        

(0.007)  

  

(0.008)  

  

Panel E: Fuzzy RD Estimates of the Impact 

  Heating On  

 of AQI on Non- 

0.016  

CVR Mortality (lo 

0.013  

g)   

0.012  0.010  

     (0.008)  (0.008)  (0.009)  (0.009)  

      

  Weather Controls  

  

Y  

  

Y  

  

Y  Y  

  DSP Fixed Effects  Y  Y  Y  Y  

  Observations  3,039  3,295  3,487  3,647  

  Kernel  Epanech.  Epanech.  Epanech.  Epanech.  

Notes: In the table we keep DSP locations sufficiently close to a monitoring station and drop others 
from the sample. For example, in column (1), any DSP location within 75 kilometers of a station is 
assigned the value at the closest station. We report an independent RD estimate in each cell. All 
regressions control for weather conditions (temperature, relative humidity, and precipitation) and DSP 
fixed effects. The discontinuities are estimated using local linear regressions and two different  
MSE-optimal bandwidth selectors proposed by Calonico et al. (2014) and Calonico (2019). 
BiasCorrected RD estimates are reported with robust standard errors clustered at the (DSP) county 
level below the coefficients. * significant at 5% ** significant at 1%.  
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Table A7.  Placebo Results Using Southern Cities      

    
RD Estimates  

 

    (1)  (2)  (3)  (4)  

Panel A: Winter Heating and AQI    

    AQI  

    

  Heating On  9.5*  8.3  2.7  1.8  

    (5.5)  (5.9)  (5.2)  (4.3)  

  Bandwidth (Left)  3.14  2.42  2.13  2.13  

  Bandwidth (Right)  3.22  

    

3.01  

  

3.70  

  

3.70  

  

Panel B: Winter Heating and Mortality    

    O verall Mortality (l 

  

og)  

  

  Heating On  0.048  0.078  0.044  0.040  

    (0.102)  (0.083)  (0.085)  (0.071)  

  Bandwidth (Left)  4.30  3.67  3.44  3.44  

  Bandwidth (Right)  

  

    

5.40  

  

4.59  

  

CVR Mortality (l 

5.04  

  

og)  

5.04  

  

  Heating On  0.073  0.053  0.033  0.033  

    (0.100)  (0.084)  (0.086)  (0.070)  

  Bandwidth (Left)  5.03  4.39  3.65  3.65  

  Bandwidth (Right)  

      

    

5.74  5.14  

  

Non-CVR Mortalit 

5.36  

  

y (log)  

5.36   

  Heating On  0.054  0.058  0.044  0.020  

    (0.151)  (0.135)  (0.137)  (0.113)  

Bandwidth (Left)  4.10  3.82  3.66  3.66  

   Bandwidth (Right)  4.82  4.47  4.51  4.51  

    

  RD Estimates  

  

Bias-Cor. Robust  

  

Bias-Cor.  

Robust  

  

Bias-Cor.  

Robust  

  

Conventional  

  Weather Controls  N  N  Y  Y  

  DSP Fixed Effects  N  Y  Y  Y  

  Observations  1,184  1,184  1,184  1,184  

   Kernel  Epanech.  Epanech.  Epanech.  Epanech.  
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Notes: The table presents placebo tests using cities in the south. We randomly assign the 
heatingon dates from northern cities to southern cities and estimate the discontinuities using local 
linear regressions and MSE-optimal bandwidth selectors proposed by Calonico et al. (2014) and 
Calonico (2019). Each cell in the table represents a separate RD estimate. Weather controls include 
temperature, relative humidity, and precipitation. Standard errors clustered at the (DSP) county 
level are reported below the coefficients. * significant at 5% ** significant at 1%.  
Table A8. RD Estimates with High-order Weather Controls  

    RD Estimates  
 

      (1)  (2)  (3)  

      

Panel A: Winter Heating and Mortality (log)    

   Heating On  0.130**  

  

0.130**  

  

  

0.130**  

     (0.037)  (0.036)  (0.037)  

     

Panel B: Winter Heating and CVR Mortality (log)  

   Heating On  0.159**  

  

  

0.162**  

  

0.163**  

      (0.042)  (0.043)  (0.044)  

     

Panel C: Winter Heating and Non-CVR Mortality (log)  

   Heating On  0.064  

  

  

0.070  

  

0.067  

      (0.045)  

   

(0.044)  (0.044)  

  

Panel D: Fuzzy RD Estimates of the Impact of AQI on Mortality (log)   

   Heating On  0.059**  

  

  

0.057**  

  

0.062**  

     (0.017)  

   

(0.017)  (0.019)  

    

Panel E: Fuzzy RD Estimates of the Impact of AQI on CRV Mortality (log)     

   Heating On  0.029**  0.031**  

  

0.051**  

      (0.009)  (0.009)  

   

(0.019)  

    

Panel F: Fuzzy RD Estimates of the Impact of AQI on Non-CRV Mortality (log)   

  Heating On  0.010  0.009  

  

0.009  

     (0.009)  (0.009)  (0.009)  
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   Weather Controls  

   

Quadratic  

   

Cubic  

   

Quartic  

   DSP Fixed Effects  Y  Y  Y  

   Observations  3,647  3647  3,647  

   Kernel  Epanech.  Epanech.  Epanech.  

Notes: Each cell in the table represents a separate RD estimate. The discontinuities are estimated 
using local linear regressions and MSE-optimal bandwidth selectors proposed by Calonico et al. 
(2014) and Calonico (2019). Weather controls include temperature, relative humidity, and 
precipitation. Bias-Corrected RD estimates are reported with robust standard errors clustered at the 
(DSP) county level below the coefficients. * significant at 5% ** significant at 1%.  

  



 

 

Table A9. Comparisons with Selected Studies of Short-term Effects of PM2.5 on Mortality  

Study      Country    Period   Method     Effects    

Shang et al. (2013)  China  2004–08  Meta Analysis  A 10-μg/m3 increase in PM2.5 concentrations is associated 

with a 0.5% increase in respiratory mortality and a 0.4% 

increase in cardiovascular mortality.  

Zhou et al. (2015)  China  2013  Multi-City TimeSeries  A 10-μg/m3 increase in two-day average PM2.5 

concentrations is associated with a 0.6-0.9% increase in 

allcause mortality in rural China.  

Franklin et al. (2008)  USA  2000–05  Hierarchical Model  A 1.21% increase in all-cause mortality is associated with a 

10-μg/m3 increase in previous day's PM2.5 concentrations.  
Composition of PM2.5 helps explain the association.  

Kloog et al. (2013)  USA  2000–08  Time-Series  For every 10-μg/m3 increase in PM2.5 exposure, PMrelated 

mortality increases by 2.8%.  

Atkinson et al. (2014)  World  -  Meta Analysis  A 10-μg/m3 increment in PM2.5 is associated with a 1.04% 

increase in the risk of death. Substantial regional variation 

observed around the globe.  

Deryugina et al. 

(forthcoming)  

USA  1999-2013  Instrumental 

Variable  

A 10 μg/m3 increment in PM2.5 is associated with 1.8% 

increase in three-day mortality rate per million people aged 

65+.  
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Appendix Figure A1. Distribution of DSP Locations and Air Pollution Monitor Stations   

  

  
  
Notes: The red triangles are the DSP locations. The blue dots are the locations of the air pollution monitor stations. In our analysis, we include 144 
DSP locations where centralized winter heating is provided. The winter heating periods of those locations are confirmed by government websites.   
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