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Accurately estimating the effect of air pollution on COVID-19 transmission requires 
researchers to account for the epidemiological characteristics, deal with endogeneity, 
and capture the dynamic impact of air pollution. To do so, we propose a new 
econometric framework by combining the Susceptible-Infectious-Recovered-Deceased 
model, the Instrument Variable model, and the Flexible-Distributed-Lag model. Using 
data covering all Chinese cities, we find that a 10-point increase in the Air Quality Index 
would lead to a 2.80 percentage point increase in the daily COVID-19 growth rate with 
2 to 13 days of delay, implying that improving air quality can help slow the COVID-19 
spread. 
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I. Introduction 

The rapid spread of COVID-19 has led to a global public health and economic crisis, bringing 

tens of millions of infections and massive layoffs. To design effective responses to this 

unprecedented pandemic, the government needs to identify different factors affecting virus 

transmission. Existing studies have documented that virus transmission and its severity depends 

on age, gender, and comorbidities of the infected, as well as climatic conditions.1 However, less 

is known about how ambient air pollution, which causes severe damage to various health 

outcomes (e.g., Graff Zivin and Neidell 2013), can affect the transmission of COIVD-19. 

Scientists have been speculating that ambient air pollution could affect the spread of infections, 

as it might increase people’s the susceptibility and exposure to the virus. On the one hand, a rich 

link of literature has documented that air pollution can cause a persistent inflammatory response 

and impair the respiratory and immune systems (Ciencewicki and Jaspers, 2007; Diamond et al., 

2000), making it more challenging for an individual to resist infection. On the other hand, recent 

studies suggest that aerosols in the air may maintain the viability and transmissibility of the virus 

(Liu et al., 2020; van Doremalen et al., 2020). Therefore, degraded air quality, dominated by 

particulate matter or aerosols, may extend the survival of the virus in the air, which increases 

individuals’ exposure to the virus. A thin but growing literature has documented that air 

pollution is correlated with COVID-19 incidence in the U.S. (Persico and Johnson, 2020; Wu et al., 

2020), Germany (Isphording and Pestel, 2020), the Netherlands (Cole et al., 2020), Italy (Ogen, 

2020), the U.K. (Travaglio et al., 2021), and China (Zhu et al., 2020).  

However, at least two limitations have plagued the existing studies linking ambient air 

pollution to the COVID-19 outbreak. First, unlike other health outcomes, the transmission of the 

 
1 See, for example, Guan et al. (2020) and Williamson et al. (2020) for the relationships between age, gender, and 
comorbidities and COVID-19 infections, and see Carleton et al. (2020) for the relationship between climate and the 
COVID-19 transmission. 
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virus grows exponentially and the changes in the number of daily new cases will depend on the 

size of the susceptible and infected population. As will be discussed in the Empirical Strategy 

section, failure to account for such non-linearity in the number of new cases, which is common in 

the existing literature, will lead to mis-specified econometric models and generate potentially 

biased estimates.  

Second, isolating the impact of air pollution from potential confounders is challenging. It is 

well documented in the economics literature that air pollution levels are endogenous.2 Such 

concerns are exacerbated in the case of COVID-19, because economic activities (e.g., opening 

industries and schools), health interventions (e.g., social distancing and business closure), and 

human mobility (e.g., use of transportation), not only changed the transmission of COVID-19, but 

also affected the air pollution levels (Almond, Du, and Zhang 2020; He, Pan, and Tanaka 2020). 

Existing evidence on the relationship between air pollution and COVID-19 relies mostly on 

associational approaches to quantify the impact and does not explicitly address the endogeneity 

of air pollution. Hence, it remains unclear to policymakers, healthcare professionals, and 

researchers whether air pollution can causally affect the transmission of COVID-19.  

In this study, we propose a new empirical framework to tackle these empirical challenges and 

estimate the plausibly causal impact of air pollution on COVID transmission. Specifically, we 

derive our econometric specification from the Susceptible-Infectious-Recovered-Deceased (SIRD) 

model, which is widely used by epidemiologists to characterize the transmission of infectious 

disease. Based on this model, we show that the use of daily confirmed cases (or deaths) as the 

outcome variable in the regressions, as commonly employed by previous studies, could be 

problematic. Instead, the daily growth rate of the confirmed active infections should be used as 

 
2  See, for example, Arceo, Hanna, and Oliva (2016); Chay and Greenstone (2003); Cheung, He, and Pan (2020); 
Deryugina et al. (2019); Deschênes, Greenstone, and Shapiro (2017); He, Liu, and Zhou (2020); Heft-Neal et al. (2020); 
Knittel, Miller, and Sanders (2016). 
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the outcome variable, which allows us to account for the exponential epidemic growth. Then, to 

deal with the endogeneity issue, we use thermal inversions as the instrumental variable. Thermal 

inversion is a natural phenomenon that involves changes in the normal tendency of the air to cool 

down with altitude and has been used as the instrumental variable for air quality in multiple 

previous studies (e.g., Arceo, Hanna, and Oliva 2016; He, Liu, and Salvo 2019). When a thermal 

inversion occurs, a layer of warmer air overlays a layer of cooler air in the atmosphere. Because 

warmer air has a lower density, the air pollutants emitted from the ground surface are “trapped,” 

which eventually leads to higher levels of local air pollution. Arguably, thermal inversions induce 

exogenous changes in air pollution concentrations, which allows us the isolate the impacts of air 

pollution on COVID-19 transmission from confounders. Further, to account for the potential lags 

between infections and case confirmations due to the period of incubation, testing, and reporting 

(X. He et al., 2020; Q. Li et al., 2020), we incorporate the Flexible Distributed Lag (FDL) models 

into our statistical framework, which uses finite-order B-spline functions to approximate the 

delayed effects (e.g., Barwick et al. 2018).  

Our analyses use data from China, in which we can observe the entire circle of the COVID-19 

transmission and has high levels of air pollution. We collect comprehensive data at the day-by-

city level from all Chinese prefectural cities and find that air pollution indeed facilitated the 

COVID-19 transmission: a 10-point (14.3%) increase in the Air Quality Index (AQI) would lead to 

a 2.80 percentage point increase in the daily COVID-19 growth rate with a delay of 2 to 13 days 

(0.14 ~ 0.16 increase in the reproduction number (R0)). 3  A back-of-the-envelope calculation 

suggests that if China were able to bring down the daily AQI to below 100 in every city-by-day 

during our study period (mean AQI would have been reduced by 13.2%), the total confirmed 

 
3 Air Quality Index is a comprehensive measure of air pollution. The index is constructed using PM2.5, PM10, SO2, CO, 
O3, and NO2 concentrations. See Data (Section Ⅲ), Appendix Figure 1, and Appendix Table 1 
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cases would have been decreased by 25.7% (30,376 to 22,578). In other words, improving 

environmental quality can be a powerful tool to slow the virus transmission, particularly in high-

pollution countries.  

Our findings contribute to the literature in two important ways. First and foremost, in terms 

of methodology, we advance existing studies on air pollution and COVID-19 relationship by 

proposing a new econometric framework to estimate the causal impact. We show that estimating 

this effect requires researchers to account for the exponentiality in virus growth, the endogeneity 

of air pollution, as well as the dynamic impact. Failure to account for any of the above features 

will result in potentially biased estimates. Our empirical framework can be easily applied to 

estimate the impacts of air pollution on other transmittable diseases, as well as to test the COVID-

pollution relationship using data from other countries.  

Besides, our work also adds to the growing literature on the effects of air pollution on various 

health outcomes in China. Existing studies have investigated how air pollution affects Chinese 

people’s life-expectancy (e.g., Ebenstein et al. 2017), mortality (e.g., He, Fan, and Zhou 2016; He, 

Liu, and Zhou 2020), morbidity (e.g., Barwick et al. 2018), cognition (e.g., Graff Zivin et al. 2020; 

Zhang, Chen, and Zhang 2018), labor productivity (e.g., He, Liu, and Salvo 2019), and defensive 

expenditure (e.g., Ito and Zhang 2020). Our findings imply that the true costs of air pollution are 

greater and the government should continue its efforts to fight against pollution.  

 

II. Scientific Background 

Ambient air pollution can affect the spread of infections through increasing individuals’ 

susceptibility and exposure to the virus. First, short-term exposure to severe air pollution can 

weaken the immune system’s response to the virus and thereby increase the chance of infection 

(Ciencewicki and Jaspers, 2007; Diamond et al., 2000). In physiological studies, inhaled 
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particulates and other air pollutants can interact with immune cells within the airways. It is found 

that pollutants can trigger cellular signaling pathways, leading to multicellular immune 

responses and perturbation, and eventually cause disease or fail to prevent disease (Ghio et al., 

2012). In epidemiological studies, air pollutants such as PMs, NO2, SO2, and O3 are also found to 

be associated with inflammatory and immune responses (e.g., Tellier et al. 2019; Vawda et al. 

2014).  

Second, aerosols in air pollutants may affect virus activity and facilitate its transmission. 

Aerosols are suspensions of solid or liquid particles in the air. These particles are small and have 

a low settling velocity; therefore, they can remain airborne for prolonged periods. For example, 

coughing and sneezing can generate a substantial quantity of particles. Because of evaporation, a 

large number of these particles shrink and then behave as aerosols. Aerosols due to coughing, 

sneezing, and breathing can result in virus transmission, in which the virus from an infected 

person can be carried over a fairly long distance, compared to the transmission through large 

droplets and direct contact. Both laboratory and epidemiological studies have shown that aerosol 

transmission can be an important mode of transmissions of SARS (Yu et al., 2014), influenza (Clay 

et al., 2018; Singer et al., 2020), tuberculosis (Escombe et al., 2007), chickenpox (Leclair et al., 1980), 

and SARS-CoV-2 (i.e., COVID-19). 

 

III. Data 

1. COVID-19 data 

The COVID-19 data are retrieved from the China National Health Commission (CNHC).4 The 

data comprise newly infected, recovered, and death cases from 20 January to 1 April in 2020 in 

330 prefectural cities in China (See Figure 1 and Appendix Table 2 for summary statistics). During 

 
4 China National Health Commission (accessed 1 July 2020); http://en.nhc.gov.cn/index.html 
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this period, there were 49,982 cases and 2,553 deaths in Wuhan and 30,441 cases and 727 deaths 

in other cities. By 1 April 2020, COVID-19 was largely controlled in the country and more than 

95% of confirmed cases recovered (tested as negative), so we observed the entire cycle of the virus 

transmission (See Figure 2 and Appendix Figure 2). In our baseline analyses, we exclude Wuhan 

city due to concerns about the city’s data quality (Q. Li et al., 2020).5 

2. Air quality data  

The air quality data are obtained from 1,605 air quality monitoring stations covering all of the 

prefectural cities in China. These data are collected from China’s National Urban Air Quality 

Real-Time Publishing Platform. 6  We use the Air Quality Index, which is a comprehensive 

measure of air pollution: the index is constructed using PM2.5, PM10, SO2, CO, O3, and NO2 

concentrations, with a lower AQI meaning better air quality. In China, the AQI is determined by 

the maximum concentration of different air pollutants. We describe the relationship between the 

AQI and each pollutant in Appendix Figure 1 and Appendix Table 1. To create the city-level air 

quality data, we first calculated the distance from a city’s population center to all monitoring 

stations within the corresponding city. We then aggregated station-level air pollution data to city-

level data using inverse distance weights. For this process, stations closer to the population center 

are given higher weights so that city-level air pollution data can better represent the population 

of each city. The weights are inversely proportional to square distance.  

3. Thermal inversion data 

 
5 Wuhan was the epicenter of COVID-19 in China. During the first few weeks after the COVID-19 outbreak, the city 
faced severe medical resource shortages, and many patients could not get immediate diagnosis and treatment. On 17 
April, the Chinese government added another 1,290 COVID-19 deaths in Wuhan (without reporting the timing of the 
fatalities). COVID-19 data outside Wuhan do not suffer from similar problems because there were far fewer COVID-
19 cases in these cities, and COVID-19 tests became widely available soon after scientists learned about the situation in 
Wuhan. However, our results remain robust when we include data from Wuhan. 
6 Data can be assessed through the following website: http://106.37.208.233:20035. A recent study suggests that air 
quality data's accuracy improved substantially when automatic air pollution monitoring was introduced from 2013 to 
2015 (Greenstone et al., 2020) 
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The thermal inversion data are obtained from the MERRA-2. 7  The data include the 

temperature in 42 atmospheric layers (110m to 36,000m). Following Arceo, Hanna, and Oliva 

(2016) and He, Liu, and Salvo (2019), we use the difference in temperature between the first layer 

(110m) and the second layer (320m) because this is expected to be associated with the air pollution 

at ground level. The raw data include the information for each 50*60 km grid. We aggregate the 

grid-level data to the city level using the same methodology as the air pollution data.   

4. Weather data 

Weather data include temperature, precipitation, and snow depth. These data were obtained 

from the Global Historical Climatology Network (GHCN) from the U.S. National Oceanic and 

Atmospheric Administration (NOAA).8 We collapse these data to the city by day level using the 

same method as the air quality data. 

 

IV. Empirical Strategy 

1. The SIRD Model 

Our empirical analyses are based on the Susceptible-Infectious-Recovered-Deceased Model 

(SIRD Model), in which the individuals are classified into either Susceptible (!!), Infected ("!), 

Recovered (#!), or Deceased ($!). The size of each group evolves as follows:  

!!" = −'!!!"! (1)	  

"!" = ('!!! − , − -)"! (2) 

#!" = ,"! (3) 

$!" = -"! (4) 

 
7 MERRA-2 (National Aeronautics and Space Administration, Goddard Space Flight Center, accessed 1 July 2020); 
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 
8 Global Historical Climatology Network (National Oceanic and Atmospheric Administration, accessed 1 July 2020); 
https://go.nature.com/2Vy9fez 
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where '! is the transmission rate, , is the recovered rate, and - is the death rate. Our empirics 

aim to recover how air pollution affects the transmission rate ('! ), which is a widely used 

parameter to measure the spread of the epidemic because it deterministically affects disease 

development. Here, the reproduction number (##!) is proportional to the transmission rate (##! =

	'!/(, + -)). From Equation (2), we can write the active epidemic growth as:  

"!" = 3!"! = ('!!! − , − -)"! =$!→&	 ('! − , − -)"! (5) 

In our analyses, we assume the proportion of the susceptible population is close to 1 (!! → 1), i.e., 

almost the entire population can be thought of as susceptible.  

The solution of equation (5) can be described by the following exponential function:  

"!
"!(&

= 6)!(*(+ = 6,! (6) 

where "! is active infections at time t, and the infection growth rate (3!) is proportional to the 

transmission rate ('!). Taking the natural logarithms of this equation, we get 

log("!-&) − log("!) = 3! = 3# + ; ∗ =(>?!) + @! (7) 

Bℎ6D6, 3! =	'! − , − - 

We expect ambient air pollution to alter the COVID-19 growth rate (3!), through changes to 

the virus transmission rate ('!).9 Thus, we model the growth rate as a function of air pollution 

exposure =(>?!) and its average treatment effect (;), in addition to the baseline growth rate (3#), 

which measures the growth rate without any exposure to air pollution, and a mean-zero error 

term (@.!). 

We use the growth rate as the outcome variable because it helps us understand how pollution 

 
9 While we are also interested in investigating the effects on death rates, we do not have sufficient statistical power to 
investigate whether air pollution affects COVID-19 deaths. This is because there have been only a few COVID-19 deaths 
in most Chinese cities. Outside Wuhan, more than 90% of Chinese cities have recorded only 0 or 1 death. While more 
than 3,000 people died from COVID-19 in Wuhan city, the data were not accurate at the early stage of the outbreak in 
the city. Therefore, we refrain from discussing the relationship between air pollution and the COVID-19 death rate. See 
Appendix A for the detail. 



10 

changes the transmission rate. In contrast, using new confirmed cases (or deaths) as an outcome 

variable, as commonly employed by previous studies, could produce estimates that are difficult 

to interpret:  

F6B	GHF=IDJ6K	GLM6M! = N! − N!(& = ('!!!(&)"!(& (8) 

Or, 

log(F6B	GHF=IDJ6K	GLM6M!) = PH3('!!!(&) + log("!(&) (9) 

The number of new confirmed cases depends on both virus transmission rate ('!!!(&) and the 

current number of active infections ("!(&). Therefore, if we model the new cases as a function of 

air pollution exposure (log(F6B	GHF=IDJ6K	GLM6M!) = R#
" + ;" ∗ =(>?!) + @!), the coefficient of air 

pollution (;") will reflect not only its effect on virus transmission but also on the current level of 

disease prevalence. Because air pollution is often associated with factors affecting the ongoing 

disease outbreak (such as the timing of the virus arrival, government interventions, and local 

economic activities), it is thus likely the estimated coefficient of the pollution variable captures 

the impact of these confounding factors.   

2. The Flexible Distributed Lag Model 

To examine the dynamic impacts of air pollution on COVID-19 transmission, we can use a 

more flexible model that includes lags of the air pollution levels in the regression. Specifically, we 

use a Flexible Distributed Lag (FDL) model to capture this relationship, which can be described 

as:  

3.! = log(".!) − logS".,!(&T =U >V".,!(0 ∗ =(;!(0
1 )

0
+U W.,!(0 ∗ =(X!(0

1 ) +
0

Y. + Z! + @.,! (10) 

where 3.! is the daily growth rate of active infections in city I at day \. >V".,!(0 denotes Air 

Quality Index (AQI) in city I at day \ − ], and W.,!(0 is a set of control variables in city I at day 

\ − ]. We include temperature, precipitation, and snow depth as control variables because these 
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climatic conditions could affect virus transmission (Carleton et al., 2021). We include the AQI and 

these control variables during the period between ] = 0 , and ] = 21  (previous 3 weeks). 

Existing studies suggest that the virus incubation period is often around 5-6 days, with 2 days 

being the lower bound (X. He et al., 2020; Q. Li et al., 2020). Therefore, we are particularly 

interested in the effect starting from ] = 2 to ] = 13.  

;!(0 	estimates the effect of air pollution in day t-k on the virus growth rate in day t. To 

investigate the dynamic impact of air pollution, we use the FDL model, which approximates the 

set of coefficients ;!(0  as a cubic B-spline function with z segments, as denoted by =(;!(01 ). 

Because daily variation in air pollution is often highly correlated, this smoothing process helps 

reduce artificial oscillations in the parameter estimates (Barwick et al. 2018).10  

Y. and Z! denote city and date fixed effects, which are a set of city-specific and time-specific 

dummy variables. The inclusion of these sets of fixed effects helps isolate variation in air pollution 

exposure from time-invariant, time-specific, or seasonal confounders, which could be correlated 

with virus transmission. Specifically, city fixed effects (Y.) account for time-invariant confounders 

specific to each city (e.g., the city’s income level, natural endowments, and short-term industrial 

and economic structure), while time fixed effects (Z!) account for shocks that are common to all 

cities on a given day (e.g., national virus containment policies, macroeconomic conditions, and 

the national air pollution time trend). Conditional on these fixed effects and the time-varying 

control variables, we assess how air pollution affects virus growth rate. If air pollution accelerates 

virus transmission, ;!(0 will be positive.  

Note that, as is common in any infectious disease literature, the confirmed active cases could 

be substantially lower than the true cases, and the use of the confirmed cases might not be precise 

(R. Li et al., 2020). In our study, this concern can be partially alleviated for at least three reasons. 

 
10 In our primary model, we adopt z = 3 segments. For the robustness check, we also choose z = 2 and z = 4. 
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First, we use the growth rate of confirmed active infections as our outcome variable, so our 

findings will not be affected as long as the under-reporting does not change much (for example, 

50% of infections are always confirmed) within a city. Second, our regression includes date fixed 

effects, and this can absorb the national-level testing policies or revision of the disease 

classification (for example, the Chinese government changed the disease classification on 18 

February). Finally, we exclude Wuhan from the baseline analysis. Wuhan was the epi-center in 

China during the COVID-19 outbreak and most cases were identified in this city. During the early 

period of the outbreak, data reporting and case confirmation were likely inaccurate in the city, so 

we conduct our main analyses using data outside Wuhan. 

3. The Instrumental Variable Approach 

To estimate the causal relationship between air pollution and COVID-19 transmission, we 

need to isolate the effect of air pollution from other confounding factors that could also affect the 

virus spread. Our solution is to adopt the Instrumental Variable (IV) approach. We use thermal 

inversion to instrument air pollution (Arceo et al., 2016; He et al., 2019). Thermal inversion is a 

natural phenomenon in which a layer of cooler air is overlaid by a layer of warmer air in the 

atmosphere. When a thermal inversion occurs, the air pollutants emitted from the ground surface 

will be trapped, which raises the air pollution concentration. We use a 2SLS procedure to estimate 

the IV model. The first stage in 2SLS can be described as  

>V"^ .,!(0 =U _"F`6DMIHF.,!(2 ∗ =(a!(2
1 )

2
+U W.,!(2 ∗ =(X!(2

1 ) +
2

b. + c! + 6.,! (11) 

where _"F`6DMIHF.,!(2, denotes the difference in temperature between surface ground and upper 

layer in city i in time t-j ( 0 ≤ e ≤ 21) , with the larger number representing the warmer 

temperature in the upper layer. (Therefore, we expect a!(21  to be positive.) Because the 

occurrence of the thermal inversion can be affected by weather conditions, we control for 
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temperature, precipitation, and depth of snow (W.,!(0). We also include city fixed effects (b.), and 

time fixed effects (c!). 

 In the second stage, we regress the daily virus growth rate on this predicted pollution 

concentration rather than on observed pollution concentration using the following equation:  

3! =U >V"^ .,!(0 ∗ =(;f!(0
1 )

0
+U W.,!(0 ∗ =(X!(0

1 ) +
0

Y. + Z! + @.,! (12) 

where >V"^ .,!(0 is predicted air pollution from the first stage. Other variables are analogous to 

equation (10). ;f0 measures the plausibly causal impact of air quality on virus transmission. In 

other words, the thermal inversion-driven air pollution has to be uncorrelated with the error term 

@.,!, conditional on the set of fixed effects and time-varying control variables, which is not directly 

testable. We cluster the standard errors at the city level. 

4．Placebo Test 

To examine the relationship between thermal inversion and air pollution, we regress daily air 

pollution levels on the occurrence of thermal inversions, conditional on the set of control variables 

and fixed effects used in equation (10) - (12). We conduct a “placebo” test to rule out the possibility 

that the strong inversion-pollution relationship is driven by the local trends/seasonality, the 

spatial distribution of frequency of the thermal inversion, or other factors. Specifically, we 

randomly shuffle the observed thermal inversions (1) within the same location or (2) within the 

same day by 1000 times and re-estimate the relationship between pollution and placebo 

inversions. We plot the distribution of the estimated coefficients and find that their average effects 

are close to zero.  

5. Back-of-the-envelope calculation 

We estimate the excess COVID-19 cases attributable to poor air quality. Developing countries, 

including China, have suffered greatly from poor environmental quality as the cost of rapid 
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economic growth (Greenstone et al., 2020). In China, AQI lower than 100 is regarded as “moderate” 

or “good” air quality (See Appendix Table 1) and is recognized as the “blue sky”. However, 

during our study period, 18.6% of the samples (city-by-day) did not meet this standard, and 30% 

of the cities explains 72.9% of the share with poor air quality. To estimate the excess COVID-19 

cases, we first estimate their daily growth rate in two scenarios: observed air quality and the blue 

sky scenario (AQI is always lower than 100) by calculating the following equations. 

3f.!
3 = 3#.! −U (>V".,!(0 − >V".,!(0

3 ) ∗ =(;f!(0
1 )

0
(>2) 

where 3#.! denotes the observed daily growth rate in city i at time t, and 3.!3  denotes the growth 

rate if the AQI were always lower than 100. >V".,!(0  is observed AQI and >V".,!(03  is the 

hypothetical AQI, in that AQI higher than 100 is replaced with 100. =(;f!(01 )  represents the 

estimated coefficients from our main estimates (equation (12)). As discussed in the main analyses, 

we only consider impacts between k = 2 and k = 13. 

Using the predicted growth rate, the active infections in the blue sky scenario would have 

been: 

LG\g`64!
3h =LG\g`64,!(&

3h ∗exp	(3f.!
3 ) (>3) 

 The predicted number of active infections in city i at time t builds on that number in the 

previous period. To predict these numbers, we use the initial active cases in each city when it 

exceeds 10. We then use the observed removal rate in equations (3) and (4) to estimate the 

cumulative confirmed cases.  

For the removal rate, we use the following equation.  

D6JH`LP	DL\6!	(,! + -!) =
D6GH`6D6K	IFKI`IKlLP + K6LK	IFKI`IKlLP	L\	\IJ6	\

IF=6G\IHFM	L\	\ − 1
(>4) 

For this projection, we allow the removal rate to vary over time because it should vary depending 

on the stage of the outbreak. Note that the individuals are classified as recovered when they are 
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tested as negative in our dataset. Therefore, its definition is slightly different from that in the 

classical SIRD model.  

 

V. Results 

1. First-stage: Thermal inversion and air quality 

For the 2SLS procedure to be valid, the first assumption is that the instrument needs to be a 

strong predictor of the air pollution concentration. Figure 3A shows that thermal inversion is 

indeed highly correlated with local air pollution levels, even after we include all the time-varying 

control variables and a set of fixed effects. Specifically, we find that a 1℃  increase in the 

temperature inversion is associated with a 3.03-point increase in the Air Quality Index (AQI), as 

shown in Figure 3B. The results also hold when we further control for the city lockdown 

indicator 11  and the days since the disease outbreak, suggesting thermal inversion is not 

correlated with city lockdown status or the development of the COVID-19 pandemic. We also 

include data from Wuhan in the regression and find similar findings. These results are 

summarized in Appendix Figure 3.  

To confirm that this strong relationship is not driven by the local time trends or the spatial 

distribution of frequency of thermal inversions, we conduct two sets of placebo tests. Specifically, 

we randomly shuffle the observed thermal inversions (1) within the same location and (2) within 

the same day 1000 times. We find that the average estimates using the placebo sample in each 

case are close to zero, as shown in Figure 3B.  

 
11 We collected local governments’ lockdown information city by city from various news media and government 
announcements. In this paper, we designated a city as locked down when the following three measures were all 
enforced: (1) prohibition of unnecessary commercial activities in people’s daily lives, (2) prohibition of any type of 
gathering by residents, (3) restrictions on private vehicles and public transportation. Following our definition, 95 out 
of 324 cities were locked down in our study period. For the detail see (G. He et al., 2020b; Qi et al., 2020) and Appendix 
Table 3. 
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2. Second-stage: Dynamic relationship between air quality and COVID-19 growth rate 

In the second stage, we use predicted air pollution from the first-stage regression to estimate 

the pollution-transmission relationship. We include up to 22 days of lags in the regressions 

(current + previous 21 days) to capture its dynamic impacts.  

Our IV estimates are summarized in Figure 4A (Appendix Table 4 for full results). We find 

positive impacts of air pollution on COVID-19 growth rates with 2 to 13 days of delay. This delay 

is consistent with epidemiological observations that the disease is usually confirmed after 

incubation, testing, and reporting (X. He et al., 2020; Q. Li et al., 2020). Specifically, a 10 point 

(14.3%) increase in AQI during this time window raises the growth rate by 2.80 percentage points. 

In contrast, outside the time window, air pollution does not have a meaningful effect.  

These results are robust to a number of different model specifications. We add the city’s 

lockdown status (Appendix Figure 4A) and days since the outbreak as control variables (4B), 

include Wuhan in our regression (4C), and use different FDL model segments (4D, 4E). All results 

remain similar. In addition, we add three days of future air pollution as another placebo test and 

find that, as expected, its effects are close to zero and statistically insignificant (4F). When we 

change the lengths of the lags of air pollution from 16 days to 24 days, we also observe similar 

patterns (Appendix Figure 5). 

We observe that the average daily growth rate in the first week of the epidemic outbreak is 

24.9% across cities, with the doubling time of infections at 2.78 days. If AQI increases 10 points, 

the doubling time would be shortened to 2.50 days. Alternatively, assuming the removal rate 

(total of recovered rate (,) and death rate (-) in our SIRD model) is 17%~20%, which means the 

patients recover or die in 5.8~7.5 days,12 a 10-point increase in AQI would lead to 0.14~0.16 higher 

 
12 In our dataset, the individuals with infections are classified as recovered when they test negative, rather than when 
they recover from symptoms. Therefore, to estimate the reproduction number from our main results, we adopt the 
removal rate which is reported by existing studies. They suggest that an average interval is 5.8 days (X. He et al. 2020) 
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reproduction number (## = '/(, + -)).  

Existing studies linking air pollution to various health outcomes often find that ordinary least 

squares (OLS) estimates understate the impact of air pollution (Appendix Figure 6). We also find 

that the OLS estimates are substantially smaller than the IV estimates (even though the dynamic 

patterns are similar). OLS regression shows that a 10-point increase in AQI between 2 days and 

13 days before the case is reported is associated with a 0.77 percentage point increase in the 

growth rate. This is about one-fourth of the IV estimate, suggesting that the OLS estimate can be 

biased downward. Appendix Figures 5 and 7 provide more robustness checks using different 

model specifications. 

3. Results by different air pollutants 

We also provide the results using specific air pollutants (PM2.5, PM10, SO2, NO2, CO, O3). 

Generally, we observe that higher pollution levels increase the growth rate of COVID-19 with 2-

13 days of delays (Appendix Figure 8A). For example, a 10% increase in PM2.5 (A1), SO2 (A3), and 

CO (A5) statistically significantly leads to a 1.4 ppt, 1.1 ppt, and 3.0 ppt rise in the virus growth 

rate. The only exception is ozone, for which we find a higher concentration of O3 (A6) slightly 

decreases the disease transmission, even though the relationship is not statistically significant. 

This might be because (1) the concentration of ozone is often negatively correlated with other 

pollutants (Sillman, 1999), and (2) ambient ozone can inactivate the virus by disrupting the virus 

structure (Tseng and Li, 2006). Moreover, across most pollutants, OLS estimates (Appendix Figure 

8B) are substantially smaller than the IV estimates, consistent with our baseline findings.  

4. Back-of-the-envelope calculations for the “blue sky” scenarios 

We estimate the excess COVID-19 cases attributable to poor air quality. In China, when daily 

AQI is below 100, it is regarded as “good” or “moderate” air quality (also called a “blue sky” day). 

 
or 7.5 days (Q. Li et al. 2020), making the removal rate 17.4%-19.6%. 
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During our study period, 18.6% of the city-by-day observations do not meet this standard, and 

most of the “above-standard” (worse air quality) readings are obtained from northern Chinese 

cities. Here, we ask what would happen if we were able to bring the air quality index in all 

Chinese cities to below 100, holding other things constant.  

Our estimates imply that the daily virus growth rate would have been slowed by 2.11% on 

average if all the cities had met the AQI=100 standard (Figure 5A). Consequently, the number of 

active infections would have been reduced substantially. For instance, the number of active 

infections would have dropped from 21,855 to 16,714 (23.5%) on 14 February, when we recorded 

the highest active infection number in China (Figure 5B). Applying our estimates to the observed 

removal rate13, we expect that the cumulative confirmed cases would have been reduced by 25.7% 

(30,376 to 22,578) during our study period (Figure 5C).  

The simulation shows that air pollution reshaped the exponential growth of the virus. We 

observe that the difference in the confirmed cases is small in the initial outbreak but gradually 

becomes larger as the outbreak progresses. If we do not model the virus transmission process 

using the SIRD model, we will not be able to capture the dynamic, cumulative, and non-linear 

impacts of air pollution on COVID-19 cases.  

 

VI. Conclusion 

Accurately estimating the effect of air pollution on COVID-19 transmission requires 

researchers to account for the exponentiality in virus growth and to introduce exogenous shocks 

to local air quality. Based on the SIRD model, we show that a non-structural framework that 

directly links the number of new cases to air pollution can be problematic. We also documented 

 
13 For the back-of-the-envelope calculation, we use the observed removal rate to consistently project the epidemic 
growth in different policy scenarios. 



19 

that associational analysis based on simple OLS regression models will understate the true impact 

of air pollution on COVID-19 transmission, which is consistent with the previous environmental 

economics literature. 

We find that a 10-point (14.3%) increase in AQI leads to a 2.80 percentage point increase in the 

daily growth rate over 2 to 13 days after the pollution exposure. The effect is statistically 

significant and economically meaningful. For example, holding all else constant, if we were able 

to bring all the air quality levels to the country’s standard (AQI = 100, mean AQI would have been 

reduced by 13.2%), a back-of-envelope calculation reveals that the cumulative cases of COVID-19 

would have been reduced by 25.7% 

Knowing that air pollution can increase the transmission of COVID-19 is particularly relevant 

to developing countries that rely heavily on manufacturing and coal (such as India, Indonesia, 

and Pakistan). These high-pollution countries face significant challenges in controlling COVID-

19, in part because of the faster transmission rate caused by high levels of air pollution. 

Policymakers in these countries should thus consider adopting more stringent pollution control 

policies in their war to combat COVID-19.  
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Figures 

 
Figure 1. Data on COVID-19 infections and air pollution in China. 

 
Notes: Panel A shows the trend of the Air Quality Index (AQI). Higher AQI means worse air 
pollution. AQI is a comprehensive measure of air pollution: the index is constructed using PM2.5, 
PM10, SO2, CO, O3, and NO2 concentrations (See Appendix Table 1). AQI is high in the Gobi Desert 
(North West part). Panel B shows the distribution of confirmed COVID-19 cases. The gray color 
denotes the no-data areas. 
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Figure 2. Data on COVID-19 infections and air pollution. 

 

Notes: In Panel A, we plot daily confirmed cases (blue dash line), active infections (blue area), 
recovered (orange area), and deaths (red area) from 1 January to 1 April. The vertical line is the 
date of the Wuhan lockdown (23 January). Panel B plots the average growth rate of active 
infections. If it is larger than 0, the active infections increase. Panel C plots the trend of the Air 
Quality Index (AQI). Higher AQI means worse air pollution.  
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Figure 3. Variation in thermal inversion is strongly correlated with the Air Quality Index 

 
Notes: Panel A plots the distribution of thermal inversions, defined as the difference between the 
temperature in the second layer (320m) and that in the first layer (110m). The Y-axis represents 
the residual in variation in the AQI after controlling for temperature, precipitation, snow depth, 
city fixed effects, and date fixed effects. A higher temperature in the second layer is strongly 
associated with a larger residual in the AQI (worse air quality). In Panel B, we show that 1℃ 
increase in temperature inversion is associated with a 3.03 increase in the AQI. We find no 
statistically significant association between placebo thermal inversions and the AQI. In the 
placebo sample, we randomized the thermal inversions across different days within the city, or 
across different cities within a specific day.  
 
 

  



2 

Figure 4. Severe air pollution amplifies COVID-19 transmissivity with 2-13 days of delay 

 

Notes: Panel A plots the IV estimates. Weather controls (temperature, precipitation, and snow 
depth), date fixed effects, and city fixed effects are included in both the first and second stage 
regression. The blue dots represent the point estimates and the gray areas denote the 95% 
confidence intervals. Panel B reports the OLS estimates. The regression includes the same set of 
controls as in Panel A. Panel C on the right compares the magnitude of the effects between IV 
results and OLS results. The gray crosses represent the point estimates, and the gray lines show 
the 95% confidence intervals. In all regression, standard errors are clustered at the city level. 
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Figure 5. Simulated impacts of air pollution on the daily growth rate, active infections, and 

confirmed cases of COVID-19 

 

Notes: Panel A represents the observed daily growth rate of COVID-19 and the hypothetical rate 
in the “blue sky” scenario (an AQI exceeding 100 is replaced by 100). The orange bar represents 
the change in the growth rate (right axis). Panel B shows the active cases in the two scenarios and 
the orange bar shows the difference. Panel C predicts the estimated cumulative confirmed cases 
over time. To compute these numbers, we use the observed removal rate, which is shown by the 
orange bars.  
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Appendix A: The Effect of Air Pollution on the COVID-19 Death Rate 

Existing studies suggest that air pollution increases deaths from COVID-19, likely because air 

pollution could impair the physical capability to recover from the infection. This is policy-relevant, 

but our dataset does not have sufficient statistical power to investigate the relationship. Outside 

Wuhan, there were only around 700 deaths from the pandemic in China, with about 90% of cities 

having no death or just one death. While more than 3,000 deaths are recorded in Wuhan, the data 

may not be accurate. For example, on 17 April 2020, the official COVID-19 death record in Wuhan 

was revised, with 1,290 deaths being added but without telling us the timing of the deaths. 

Nevertheless, here we examine the relationship between air pollution and death rate by 

aggregating the daily level data to the weekly level so that we can have a wider variation in the 

outcome. Our outcome variable is not the growth rate of deaths because it should be proportional 

to the growth rate of the infections. Instead, we use the death rate, which is defined as the 

probability of death given infection. Using this outcome variable, we fit the following model, 

analogous to equation (7), 

-! =
$! − $!(&
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where the death rate is a function of baseline death rate, air pollution, and mean zero error term. 

We use the same control variables and a set of fixed effects as in equations (9) – (11).  

We do not find any suggestive evidence that air pollution increases the death rate of the 

patients (Appendix Figure 9). All coefficients seem to be very small, and the sign is not consistent. 

As expected, our data may not have sufficient statistical power to investigate the relationship 

accurately.  
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Appendix Figures 

 

Appendix Figure 1. Air Quality Index is correlated with the most important pollutants 

 

Notes: Panels A to F respectively represents the relationship between the AQI and each pollutant, 
including PM2.5, PM10, SO2, NO2, CO, and O3, which are components of the index. During the 
wintertime in China, PM2.5, PM10 are the primary pollutants in most cities and thus determine the 
levels of API. There is a strong correlation between the AQI and each pollutant, except for O3 
(ozone). This might be because ozone is mechanically negatively correlated with some of the 
primary pollutants. We trim the observations below 1 percentile and above 99 percentile in each 
pollutant. See Extended Data Table 1 for the definition of the AQI.  
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Appendix Figure 2. COVID-19, its growth rate, and the Air Quality Index  

in Hubei Province, Beijing, Shanghai, and Wuhan 

 

Notes: These figures show the COVID-19 outbreak (number of active, recovered, and deceased 
from COVID-19), the infection growth rate, and AQI in each region in different cities.  
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Appendix Figure 3. Strong correlation between thermal inversion and air pollution  

is robust to different specifications 

 

Notes: These figures show the correlations between temperature inversion and residuals in the 
Air Quality Index, after controlling for the weather variables, city fixed effects, and date fixed 
effects. Panel A plots the coefficients of the contemporaneous relationship for each model, which 
corresponds to Figure 3A. Panes B to D show the distribution of thermal inversions and the AQI 
residual. Panel B includes lockdown status as a control variable, Panel C includes lockdown status 
and days since the outbreak (first confirmed cases) as control variables. Panel D includes data 
from Wuhan city in the regression. 
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Appendix Figure 4. The effects of air pollution on the COVID-19 growth rate using the IV 

estimates are robust to a number of model specifications 

 

Notes: In Panel A, lockdown status is added as a control variable. In Panel B, the lockdown status 
and days since the outbreak (the first case confirmed) are added in the regression. In Panel C, we 
include Wuhan. In Panels D and E, we adopt different segments for the Flexible Distributed Lag 
Model. In Panel F, we add up to three days of leads of daily air pollution levels in the regression. 
The coefficients for the three leads are all close to zero, suggesting that future air pollution does 
not affect the current disease growth rate. Thermal inversions and the same controls are used for 
all first-stage regressions. All regressions include weather controls (temperature, precipitation, 
and snow depth), date fixed effects, and city fixed effects. Standard errors are clustered at the city 
level. 
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Appendix Figure 5. The effects of air pollution on the COVID-19 growth rate  

using different lags 

 
Notes: Panel A represents the IV estimates. We use different lengths of lags from 16 days to 24 
days. The blue line plots the baseline estimates (21 days), and the gray line shows the results with 
different lags. Panel B shows the results using OLS estimates. 
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Appendix Figure 6. Instrumental variables (IV) estimates are consistently larger than OLS 

estimates in existing studies linking air pollution and health outcomes 

 

Notes: This figure plots the estimates of the effect per 10 unit increase in air pollution on mortality 
rate (%). Deryugina et al. (2019) use mortality among aged above 65. Except for Chay and 
Greenstone (2003), existing studies report the OLS estimates are smaller than the IV estimates. 
Note that different studies focus on different pollutants and use different instrumental variables. 
Therefore, we do not compare estimates across different studies but across different methods 
within each study.  
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Appendix Figure 7. The correlations between air pollution and COVID-19 growth rate  

using OLS estimates are robust to a number of model specifications 

 
Notes: In Panel A, we include the lockdown status as a control variable. In Panel B, we include the 
lockdown status and days since the outbreak (the first case confirmed) as control variables. In 
Panel C, we include data from Wuhan in the regression. In Panels D and E, we use different 
segments for the Flexible Distributed Lag Model. In Panel F, we add three days of leads daily air 
quality levels in the regression. Thecoefficients for the three leads are all close to zero, suggesting 
that future air pollution levels are not correlated with the current disease growth rate. All 
regressions include weather controls (temperature, precipitation, and snow depth), date fixed 
effects, and city fixed effects. Standard errors are clustered at the city level. 
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Appendix Figure 8. The effects of air pollution on the COVID-19 growth rate  

using different air pollutants. 

 
Notes: Panels A1 to A6 plot the IV estimates. Each figure shows the coefficient of a 1 point increase 
in each pollutant in each day. Weather controls (temperature, precipitation, and snow depth), 
date fixed effects, and city fixed effects are included in both the first and second stage regression. 
The blue dots represent the point estimates, while the blue areas denote the 95% confidence 
intervals. Panel Bs plot the OLS estimates with the same set of controls. The red dots represent 
the point estimates, while the red areas denote the 95% confidence intervals. In all regressions, 
standard errors are clustered at the city level. 
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Appendix Figure 9. Impacts of air pollution on the COVID-19 death rate 

 
Notes: Panel A plots the trend in the number of the COVID-19 deaths over time outside Wuhan. 
Panel B plots the distribution of deaths in each city. Panel C on the right compares IV estimates 
with OLS estimates. We aggregate data to the week-by-city level for this analysis. We do not find 
a statistically significant relationship between AQI and the death rate. 
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Appendix Tables 

 

Appendix Table 1. The relationship between the AQI and different air pollutants. 
 Each Air Pollutant  

AQI 
PM10 

(24hr) 

PM2.5 

(24hr) 

NO2 

(24hr) 

O3 

(8hr) 

CO 

(24hr) 

SO2 

(24hr) 
Air Quality Levels 

0-50 0-50 0-35 0-40 0-100 0-2 0-50 Excellent 

50-100 50-150 35-75 40-80 100-160 2-4 50-150 Good 

100-200 150-350 75-150 80-280 160-265 4-24 150-800 Slightly Polluted 

200-300 350-420 150-250 280-565 265-800 24-36 800-1600 Moderately Polluted 

300-400 420-500 250-350 565-750 / 36-48 1600-2100 Severely Polluted 

400-500 500-600 350-500 750-940 / 48-60 2100-2620 Severely Polluted 

Notes: This table reports the AQI sub-index levels for each air pollutant. The sub-index with the 
highest value will then be used as the AQI. For CO, the unit is mg/m3, and for other pollutants, 
the units are µg/m3. 
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Appendix Table 2. Summary Statistics 

 Variable Obs Mean Std. Dev. Min Max 

A. COVID-19 

 Growth Rate 30,268 18 109 -1 2760 

B. Air Quality 

 Air Quality Index 29,701 69.7 49.7 9.08 500 

 PM2.5 (µg/m3) 29,705 46.3 39.7 1.83 1324 

 PM10 (µg/m3) 29,705 70.4 69.3 3.33 2342 

 SO2 (µg/m3) 29,705 11.6 9.3 1 129 

 NO2 (µg/m3) 29,705 24.7 15 1.67 115 

 CO (mg/m3) 29,705 0.869 0.449 0.1 6.26 

 O3 (µg/m3) 29,701 53.6 20.9 1.55 200 

C. Weather 

 Thermal Inversion (℃) 29,029 0.864 1.23 0 10.2 

 Temperature (℃) 30,268 5.95 8.52 -30.7 28.9 

 Precipitation (mm) 30,268 23.3 61.4 0 1498 

 Snow (depth, mm) 30,268 54.9 31.9 10 412 

Notes: Growth rate is computed by taking the first difference in the natural logarithm of daily 
confirmed active cases.  
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Appendix Table 3. List of locked-down cities 
Starting Date Cities 

23-Jan Wuhan 

24-Jan Huangshi, Shiyan, Yichang, Ezhou, Jingmen, Xiaogan, Huanggang, Xianning, Enshi 

25-Jan Qinhuangdao 

26-Jan Xiangyang, Jingzhou, Xiantao 

28-Jan Tangshan 

30-Jan Dongying 

31-Jan Chongqing, Yinchuan, Wuzhong 

2-Feb Wenzhou 

3-Feb Wuxi, Jining 

4-Feb Harbin, Nanjing, Xuzhou, Changzhou, Nantong, Hangzhou, Ningbo, Fuzhou, 

Jingdezhen, Zaozhuang, Linyi, Zhengzhou, Zhumadian 

5-Feb Shenyang, Dalian, Anshun, Fushun, Benxi, Dandong, Jinzhou, Fuxin, Liaoyang, Panjin, 

Tieling, Chaoyang, Huludao, Yangzhou, Hefei, Quanzhou, Nanchang, Jinan, Qingdao, 

Taian, Rizhao, Laiwu, Nanning 

6-Feb Tianjin, Shijiazhuang, Suzhou, Pingxiang, Jiujiang, Xinyu, Yingtan, Ganzhou, Ji’an, 

Yichun, Fuzhou, Shangrao, Neijiang, Yibin, Xinyang 

7-Feb Suzhou, Guangzhou 

8-Feb Shenzhen, Foshan, Fangchenggang, 

9-Feb Cangzhou, Huaibei 

10-Feb Beijing, Shanghai 

13-Feb Hohhot, Baotou, Wuhai, Chifeng, Tongliao, Ordos, Hulun Buir, Bayan Nur, Ulanqab, 

Xing’an League, Xilingol League, Alxa League 

Notes: The lockdown information is from local government and various media news in 2020. 
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Appendix Table 4. Full results of the effect of air quality on the COVID-19 growth rate 

Dependent Variable: 

Daily disease growth rate 

OLS IV 

coefficients s.e. coefficients s.e. 

(1) (2) (3) (4) 

Current Day -0.011 [0.005] -0.054  [0.035] 

lag: 1 day -0.003 [0.002] -0.002  [0.014] 

lag: 2 days 0.003 [0.002] 0.028 [0.012] 

lag: 3 days 0.006 [0.002] 0.042 [0.014] 

lag: 4 days 0.008 [0.002] 0.044 [0.013] 

lag: 5 days 0.008 [0.001] 0.038 [0.010] 

lag: 6 days 0.007 [0.001] 0.028 [0.010] 

lag: 7 days 0.006 [0.001] 0.018  [0.013] 

lag: 8 days 0.006 [0.001] 0.012  [0.013] 

lag: 9 days 0.006 [0.001] 0.011  [0.013] 

lag: 10 days 0.006 [0.001] 0.012  [0.012] 

lag: 11 days 0.006 [0.001] 0.014  [0.012] 

lag: 12 days 0.007 [0.001] 0.016  [0.014] 

lag: 13 days 0.006 [0.001] 0.018  [0.016] 

lag: 14 days 0.006 [0.001] 0.017  [0.016] 

lag: 15 days 0.004 [0.001] 0.014  [0.016] 

lag: 16 days 0.003 [0.001] 0.008  [0.019] 

lag: 17 days 0.001 [0.001] 0.003  [0.021] 

lag: 18 days -0.000 [0.001] -0.001  [0.022] 

lag: 19 days -0.002 [0.001] -0.003  [0.019] 

lag: 20 days -0.002 [0.002] 0.000  [0.020] 

lag: 21 days -0.002 [0.003] 0.009  [0.044] 

     

z-Segment, k-order 3, 3 3, 3 

Observations (cities) 22,701 (329) 22,701 (329) 

Weather Control Y Y 

Date fixed effects Y Y 

City fixed effects Y Y 

Notes: The results correspond to Figure 4. The dependent variable is the day-by-city level growth 
rate of the activated COVID-19 cases. Each estimate indicates the effect of the current and past air 
pollution (Air Quality Index) on the growth rate of COVID-19. Weather controls include 
temperature, precipitation, and snow depth. Standard errors are clustered at the city level and 
shown in the right-side brackets.  
 
 


