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Abstract 

 When productivity changes, how would an economy rebalance economic production and 

environmental preservation? We develop a conceptual framework to analyze the question, 

and predict that a productivity shock can have heterogeneous impacts on environmental 

quality and income. Exploiting a quasi-experiment provided by the dramatic expansion of 

China’s national expressway system, we find empirical evidence that is consistent with 

the model’s predictions: expressway access increases both pollution and GDP in initially 

poor counties, decreases pollution and GDP in initially rich counties, and decreases 

pollution while increasing GDP in counties with moderate levels of initial income. These 

findings cannot be fully explained by alternative theories such as the pollution haven 

hypothesis and home market effect. 
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I. Introduction 

Understanding the interaction between the environment and development has been a 

central issue in economics (e.g., Arrow et al., 1995). How does a society maintain a balance 

between economic development and the environment in a changing world? How does an 

economy adapt, economically and environmentally, to changes in the conditions of 

economic production? To answer these questions, we propose a conceptual framework to 

illustrate how a representative agent makes the trade-off between preserving better 

environmental quality and producing more economic output, and we provide empirical 

evidence that is consistent with the theory. 

In our conceptual framework, the decision maker, who cares about both environmental 

quality and pecuniary income, can exploit an endowment of environmental resources to 

generate income using emissions as the input, at the cost of worse environmental quality 

caused by the emissions. The optimal combination of environmental quality and income is 

then determined by properties of the income generation process and the decision maker’s 

preference. We show that, facing a positive productivity shock that increases the pecuniary 

income produced by any level of emissions, the decision maker can have heterogeneous 

responses along the set of environment–development choices, and the heterogeneity 

depends on the initial income or pollution levels. Specifically, we predict that 1) if the 

initial income (or pollution) is sufficiently low, the shock will increase both income and 

pollution; 2) when the initial income (or pollution) is sufficiently high, the shock may 

reduce both income and pollution; and 3) at a moderate level of initial income (or 

pollution), the shock can increase income while decreasing pollution but will never reduce 

income while increasing pollution. The economic intuition behind the predictions is that, 

given different initial conditions, different economies can choose different development 

paths to take advantage of an opportunity to develop. Specifically, poor (and clean) regions 
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prefer to grow in a more polluting way, while rich (and polluted) regions may be willing 

to sacrifice some income to improve environmental quality.  

Motivated by this conceptual framework, we investigate its empirical relevance in the 

context of China’s large-scale transport infrastructure improvement. From 2000 to 2012, 

the Chinese government made massive investments in constructing the national 

expressway network, which had the goal of connecting all the cities with urban population 

greater than 200,000. Although the expressways were designed to connect these 

metropolitan cities, they also connected some small counties simply because the counties 

were on the periphery of the large cities.4 We interpret the expressway access as a positive 

productivity shock to the connected counties, because it increases the counties’ ability to 

generate pecuniary income given pollution levels by reducing transportation costs, which 

helps them realize their various comparative advantages. We then estimate the impact of 

this positive productivity shock on the environmental and economic performances of 

Chinese counties using a difference-in-differences (DiD) approach, i.e., comparing the 

connected and the unconnected counties before and after expressway construction. The 

high degree of disparity in terms of the environment–development combinations across the 

counties allows us to explore how regions could respond differently to the same 

productivity shock across a wide range of initial income levels.5  

To implement the estimation, we assemble a county-level panel dataset that includes 

detailed information on GDP, pollution, expressway expansion, and other socio-economic 

conditions for more than 1,600 Chinese counties from 2000 to 2012. To our knowledge, 

this is the most comprehensive dataset of this type for China. Using this dataset, we find 

                                                
4 There are five de facto administrative levels of local government in China: the provincial, prefecture, 

county, township and village. Cities can be provincial, prefecture and county level, and are referred to as the 
urban centers or municipalities of their corresponding administrative divisions. Counties are the surrounding 
rural areas at the county level, supervised by the provincial or prefecture administrations. Intuitively, cities 
are urban areas and counties are rural areas in China.  

5 For example, per capita GDP in the richest 5% of Chinese counties was more than ten times higher than 
the poorest 5% counties in 2000. 
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that, compared with unconnected counties, the expressway access has indeed 1) increased 

both pollution (measured by pollutant emissions) and GDP in poor connected counties, 2) 

decreased both pollution and GDP in rich connected counties, and 3) increased GDP and 

decreased pollution in middle-income connected counties. These empirical findings are 

consistent with our theoretical predictions and, at the same time, challenge existing theories 

such as the pollution haven hypothesis and home market effect.  

The paper unfolds as follows. The rest of this section discusses how this study is linked 

with previous literature. Section II presents the conceptual model and predictions. Section 

III describes the empirical setting and discusses how we estimate the impacts of 

expressway connection. Section IV introduces the dataset and provides descriptive 

statistics. Section V presents our main empirical results, checks their robustness, explores 

the channels at work, and investigates potential spill-over effects of expressway 

connection. Section VI discusses alternative explanations and their limitations. Section VII 

discusses policy implications and concludes with directions for future research.  

Literature Connections 

This study speaks to several strands of literature, including but not limited to, the 

environmental Kuznets curve and the economic and environmental consequences of 

transport infrastructure improvement.   

In the environmental economics literature, much empirical research attempts to estimate 

a one-way causal link between income levels and environmental quality. In particular, 

following Grossman and Krueger (1995), a large number of studies have tested the 

environmental Kuznets curve, a popular hypothesis proposing an inverted U-shaped 

relationship between environmental degradation and income. However, no consensus has 

been reached on this pattern because empirical findings are mixed and those supporting the 

environmental Kuznets curve are often applicable only to specific contexts, time periods, 



 

 
5 

and functional forms.6 Arrow et al. (1995) and Stern (2004) object that the relationship 

between development and the environment cannot be characterized as one-way causality. 

The influential survey by Copeland and Taylor (2004) further argues that economic growth 

from different sources can have different implications for pollution, making the 

environmental Kuznets curve unstable in theory.  

This study complements these contributions and offers additional insights. Our empirical 

pattern suggests that a more complicated relationship than the environmental Kuznets 

curve can emerge even from the same productivity shock, i.e., access to the expressway: 

the responding change in income and change in pollution are positively correlated when 

income is either high or low, while they are negatively correlated when income is moderate. 

Fundamentally, our conceptual framework emphasizes that the environment–development 

relationship results from an endogenous response to changes in underlying economic 

conditions. Describing and interpreting the relationship between the environment and 

development as simple causality is thus incorrect and has limited power in predicting 

environmental and economic consequences of focal policies or natural shocks. 

This paper is also among the first efforts to estimate the economic and environmental 

consequences of transport infrastructure in an integrated framework. To date, one rich line 

of literature has focused on the economic impacts of transport infrastructure,7 while another 

has emphasized its impacts on environmental resource conservation. 8  Both lines of 

literature have primarily debated the average effects of transport infrastructure. Our 

empirical analysis reveals, however, that there is significant heterogeneity in both the 

economic and environmental impacts of transport infrastructure. 

                                                
6 See for example, Stern, 2010; Copeland and Taylor, 2004; Stern, 2004; Dinda, 2004; Yandle et al., 2004; 

Millimet et al., 2003; Dasgupta et al., 2002; Harbaugh et al., 2002. 
7  See, for example, Chandra and Thompon, 2000; Holl, 2004; Baum-Snow, 2007; Michaels, 2008; 

Banerjee et al., 2012; Datta, 2012; Duranton and Turner, 2012; Duranton et al., 2014; Rothenberg 2013; 
Zheng and Kahn, 2013; Faber, 2014; Baum-Snow, 2014; Baum-Snow et al., 2016a, 2016b; Donaldson and 
Hornbeck, 2016; Frye, 2016; Ghani et al., 2016; Qin, 2016; Jaworski and Kitchens, 2016; Alder 2017.  

8 See, for example, Chomitz and Gray, 1996; Nelson and Hellerstein, 1997; Pfaff, 1999; Cropper et al., 
2001; Deng et al., 2011, Chakravorty et al., 2015; Kaczan, 2016.  
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The heterogeneities we find challenge existing explanations in the literature. In particular, 

neither the pollution haven hypothesis nor the home market effect can explain all of 

empirical findings. On the environmental side, the pollution haven hypothesis conjectures 

that better integration of markets result in a flow of polluting capital from rich regions to 

poorer regions that have lax environmental standards (e.g., early theoretical works by 

Pethig, 1976; Siebert, 1977, McGuire, 1982; survey by Copeland and Taylor, 2004).9 On 

the economic side, with a focus on the scale of the economy, the home market effect 

proposes that transport infrastructure improvement can amplify the asymmetry between 

the peripheral and the core areas (e.g., Krugman, 1980, 1991; Helpman and Krugman, 

1985; Faber, 2014). As discussed in more detail in Section VI, the pollution haven 

hypothesis has little to offer in explaining the heterogeneous impacts of expressway access 

on income, while the home market effect is inconsistent with further analysis of our data. 

Our theoretical framework, however, can reconcile the heterogeneity pattern in a concise 

way.  

Several studies have explored the context of China and are thus closely related to our 

paper. Among them, Banerjee et al. (2012) investigated the economic impacts of railway 

construction in China during the late 19th and early 20th centuries and found that proximity 

to transportation networks had a moderately positive causal effect on per capita GDP levels 

across sectors but no effect on per capita GDP growth. Zheng and Kahn (2013) studied the 

economic impacts of high-speed rail and found that the expansion of the high-speed railway 

network increased housing prices in affected cities. Qin (2016) also examined the economic 

                                                
9 Empirical evidence on the pollution haven hypothesis is often obtained from aggregate country-level data 

(e.g., Eskeland and Harrison, 2003; Ederington et al., 2005; Frankel and Rose, 2005; Levinson and Taylor, 
2008; Levinson, 2009; Managi et al., 2009). It is often difficult to draw credible causal inferences from such 
data, because institutional, cultural, and demographical settings are highly different across countries and 
openness to trade is seldom exogenous (Copeland and Taylor, 2004; Karp, 2011). The rapid expressway 
expansion in China provides us with a more credible setting to assess the impact of trade integration on the 
environment, because peripheral counties’ access to expressways is arguably exogenous in our context and 
their institutional, cultural, and demographical difference can be controlled by fixed effects.  
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impacts of China’s high-speed railway and found that affected counties on the upgraded 

railway lines experienced reductions in GDP and GDP per capita. In a recent study, Baum-

Snow et al. (2016b) estimated the economic impacts of expressway expansions in Chinese 

cities using both structural and reduced-form approaches and found inconsistent results. 

Deng et al. (2011) show that roads have no impact on the levels of forests and on the rate 

of deforestation in Southern China. Chakravorty et al. (2015) show that road construction 

contributes to groundwater depletion in Northern China.  

Notably, our empirical focus is similar to Faber (2014), which also excludes major cities 

and compares per capita GDP between connected and unconnected counties in China. We 

differ from Faber (2014), however, in several substantial ways. First, we assemble panel 

county-level data for a more recent, longer period, 2000–2012, while Faber (2014) uses 

data for 1997 and 2006. Second, we fully exploit the panel structure of our data and adopt 

a DiD identification strategy, while Faber (2014) relies on a cross-sectional instrumental 

variable (IV) approach, which is based on a hypothetical expressway network that would 

link all target cities with the least predicted cost of construction. The identifying 

assumption in the IV approach may be overly strong, as it requires the instrument to be 

uncorrelated with any confounding factors.10 By contrast, the identifying assumption of 

our DiD approach likely holds because connected and unconnected counties indeed 

followed parallel trends before expressways construction. Third, in terms of empirical 

results, Faber (2014) finds that expressway connections significantly reduced economic 

growth in connected counties, while we find that the average impact of expressway 

connection on per capita GDP is indifferent from zero; Faber’s theoretical model predicts 

a universal negative impact of expressway connection on peripheral counties’ GDP, while 

we highlight the effect of heterogeneity and show that both positive and negative impacts 

exist.  

                                                
10 Faber (2014) acknowledges that his IV is not completely exogenous because it is correlated with some 

observables.  
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II. Theoretical Framework 

Basic Setting 

We conceptualize a small economy (a county) with some environmental endowment, !. 

The policymaker in this economy can exploit this endowment to generate pecuniary 

income, " , which, in our setting, can be measured by GDP or GDP per capita. The 

production process is defined by the production function, " ≡ $ %, ' , where % is polluting 

emissions, which are the input into this production, and ' is a parameter of productivity, 

which can be affected by various economic conditions such as transaction costs, the extent 

of market integration, and the cleanness of the technology used in production. The 

emissions, however, reduce the environmental quality, ( ≡ ! − %.  

We assume that the social welfare in this economy is determined by pecuniary income	" 

and environmental quality	(, and that the social welfare function is denoted as + ", ( . 

The policymaker then faces a resource allocation problem: 

 max
/
				+ ", ( ≡ + $ %, ' , ! − % 					s. t.				0 ≤ % ≤ !,                       (5) 

where a trade-off has to be made between income generation and environmental 

preservation. 

We make standard assumptions that the social welfare function is well-behaved: 1) +5 >

0, +7 > 0, 2) +55 < 0, +77 < 0, and 3) 0 <
9 :;<;=
9> < ∞, 0 <

9 :;=;<
9@ < ∞, −∞ <

9 :;<;=
9@ <

0 , and −∞ <
9 :;=;<
9> < 0 , guaranteeing that 1) pecuniary income and environmental 

quality are always good, 2) their marginal value is diminishing, and 3) the indifference 

curves are convex and the change rates of their slopes are finite.  

We also assume that the production function $ %, '  is continuously differentiable, 

increasing in input, i.e., $5 %, ' > 0,  and has non-increasing returns to scale, i.e., 
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	$55 %, ' ≤ 0. These assumptions guarantee that the environmental quality (Q)–pecuniary 

income (I) possibility frontier is decreasing and concave in both pecuniary income and 

environmental quality. It is also intuitive to assume that no income is generated if no 

resources are allocated, i.e., $ 0, ' = 0, and that the economic shock has a non-zero 

impact on the marginal productivity, i.e., $57 %, ' ≠ 0. 

In this model, the environmental endowment E, the productivity parameter s, and the 

shapes of the social welfare function + ⋅,⋅  and the economic production function $ ⋅,⋅  are 

exogenous. Environmental quality ( , emissions % , and pecuniary income "  are 

endogenous.  

We consider new access to an expressway as a positive shock to the income-generation 

productivity of environmental resources, i.e., we assume an increase in '  with 0 <

$7(%, ') < ∞. The increase in the economy’s ability to transform emissions into pecuniary 

income can be justified through two primary channels. First, the infrastructure 

improvement reduces trade and transportation costs, boosting the generated pecuniary 

income, even if the resource allocation plan within the income-generation process remains 

constant. Second, deeper market integration and increased opportunities for trade allow the 

connected counties to more effectively utilize their comparative advantages by re-

optimizing their resource allocation within the income-generation process. As a result, any 

given environmental resources allocated to economic production will raise pecuniary 

income in the connected counties. We then conduct a comparative statics analysis with 

respect to this positive productivity shock. Alternative interpretations of the expressway 

access, such as the interpretation following the home market effect (e.g., Krugman, 1980, 

1991), turn out to be inconsistent with the data, and we will discuss them in more detail in 

Section VI. 

We make three additional remarks here. First, we assume that the policymaker alone can 

decide the environmental resource allocation. This situation is empirically relevant in the 

context of China, because local governments, which act as the policymakers in our model, 
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hold strong control over the allocation of natural resources (notably land), capital flow, and 

even labor. For instance, since China’s market reforms in the 1980s, local governments 

have been actively attracting and strategically choosing certain investors, industries, and 

talents in order to implement their development strategies, by offering the chosen 

companies tax rebates, infrastructure improvement, price discounts for land use, exemption 

from inefficient regulations, and other generous industrial policies (e.g., Qian and Roland, 

1998; Bai et al., 2014). For labor, the Chinese government has historically used the Hukou 

system (household registration system) to control labor migration between rural and urban 

areas and within urban and rural areas. Even though migration restrictions have been 

relaxed in recent years, the costs of migration remain substantial because many social 

benefits (such as housing subsidies and medical insurances) are only available in one’s 

birthplace Hukou area. For these reasons, we will interpret our empirical evidence as 

resulting from policy responses of the local government, rather than spontaneous reactions 

of capitalists or laborers to expressway access.  

Second, as this model is static and the resource allocation problem does not involve an 

intertemporal trade-off, it has limited explanatory power when intertemporal trade-offs are 

important. Our model focuses on the trade-off between economic production and 

environmental preservation at a given period of time, which is reasonable given the short 

time horizon of many local officials in China. We are not alone in adopting a static 

approach; Greenstone and Jack (2015) build a static theoretical framework to understand 

why the marginal willingness to pay for environmental quality is low in developing 

countries.  

Finally, we impose as few assumptions as possible about the pecuniary income 

generation process and social preferences. This minimalist approach helps us derive 

generic results that rely little on over-specified structures.  
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Analysis 

   We start our analysis graphically. In Figure 1, we show the solution of the model and 

analyze all possible outcomes after a positive productivity shock is introduced to the 

system. In Panel A, we first draw an environment–development diagram, in which the 

pecuniary income is on the horizontal axis and environmental quality on the vertical axis. 

The production function $ %, '  determines a typical trade-off between producing 

economic output (more pecuniary income) and preserving the environment (fewer 

emissions). At one extreme, it allows the representative agent to choose a high level of 

pecuniary income but very little environmental protection. At the other extreme, the 

decision maker can choose a high level of environmental protection but very little 

economic output. All possible combinations of environmental quality and pecuniary 

income form the possibility frontier.  

The social welfare function determines a set of social indifference curves, and the interior 

solution to the resource allocation problem $ %F, ' , ! − %F  occurs when the possibility 

frontier and the social indifference curve are tangent to each other, just as illustrated in 

Panel A of Figure 1. Mathematically, this first-order condition for an interior solution is 

 +5 $ %, ' , ! − % $5 %, ' − +7 $ %, ' , ! − % = 0                       (6) 

or simply 

 $5 %, ' = G= H /,I ,J:/
G< H /,I ,J:/ .                                             (7) 

In other words, the productivity of environmental resources is equal to the ratio of the 

marginal utilities of environmental quality and pecuniary income, i.e., the relative prices 

of environmental quality and pecuniary income. 

The inverse of the slope of the tangent line measures the marginal willingness to pay 

(WTP) for an improved environment. The steeper the tangent line, the less pecuniary 

income the society is willing to give up for an improvement in environmental quality.  
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We now analyze the impact of an increase in economic productivity, i.e., an increase in 

', or equivalently, an expansion of the possibility frontier, on the optimal combination of 

emissions, environmental quality, and pecuniary income. Panels B, C and D illustrate the 

only three possible situations, respectively. The panels focus on the area near the initial 

and ending optimal choices, where, for clear exposition, the possibility frontiers are 

depicted approximately by locally linear lines. For example, as shown in Panel B, the 

possibility frontier expands outward from the bold, red, solid line to the bold, red, dashed 

line, because more pecuniary income can be generated from any given level of 

environmental resources allocated to production, i.e., better environmental quality can be 

achieved given any level of pecuniary income generation.  

This expansion, however, can be decomposed into two steps. Firstly, it changes the 

marginal productivity of environmental resources in generating pecuniary income, i.e., the 

slope of the possibility frontier, without changing the amount of pecuniary income that can 

be produced from the initial emissions. This change is represented by the rotation from the 

bold, red, solid line to the bold, red, dotted line around the black dot, and the optimal 

combination is shifted from the black dot to the grey dot. We call this the “substitution” 

effect.  

Secondly, the increase in economic productivity further increases the amount of 

pecuniary income that can be produced from any level of emissions without changing the 

slope of the possibility frontier. This change is represented by the rightward-upward shift 

from the bold, red, dotted line to the bold, red, dashed line, and the optimal combination 

moves from the grey dot to the white dot. We refer to this as the “expansion” effect. 

The total effect of the productivity increase on the optimal combination of emissions, 

environmental quality, and pecuniary income is therefore the sum of the substitution effect 

and the expansion effect, i.e., the transition from the black dot to the white dot. 

In Panel B, the substitution effect decreases pecuniary income (I) and emissions (e) and 

increases environmental quality (Q), while the expansion effect increases pecuniary 
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income and environmental quality and decreases emissions. Eventually, the substitution 

effect dominates so that the positive shock in economic productivity decreases pecuniary 

income and emissions. 

This situation, however, is not always true. In Panel C, the expansion effect still increases 

pecuniary income and decreases pollution. The substitution effect, however, increases 

pecuniary income and pollution. Eventually the substitution effect still dominates, but the 

positive productivity shock increases pecuniary income and pollution, in contrast to the 

case in Panel B. 

The last possible situation is that the substitution effect is small – the shift of the 

possibility frontier does not change the slope of the frontier much – so that the expansion 

effect will dominate. Panel D illustrates this situation to the extreme by assuming the slope 

of the frontier does not change at all. The expansion effect then determines the overall 

effect, which is to increase pecuniary income and environmental quality and to decrease 

pollution. 

In Appendix A, we deal with the three-phase heterogeneity more rigorously and generate 

three predictions:    

Prediction 1. If the initial income (or pollution) is sufficiently low, a positive 

productivity shock increases both income and pollution, as in Panel C. This result comes 

from the fact that, when the initial income or emissions are low, 1) the slope of the 

possibility frontier will be unambiguously flattened and 2) the expansion effect will be 

small and dominated by the substitution effect; 

Prediction 2. When the initial income (or pollution) is sufficiently high, a positive 

productivity shock can reduce both income and pollution, as in Panel B. This is a 

“possibility” result, and no more definite result about this case can be derived without 

imposing more structure about the process of generating pecuniary income;  
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   Prediction 3. A positive productivity shock can increase income while decreasing 

pollution, as in Panel D, but can never reduce income while increasing pollution. This result 

comes from the monotonicity of the possibility frontier and the positive productivity shock. 

 

III. Empirical Setting 

Expansion of China’s Expressway Network 

With a vast territory and the world's largest population, China depends heavily on its inter-

city expressways (controlled-access highways) to facilitate mass within-country trade. 

From its inception in the 1980s, China’s national expressway network, officially known as 

the National Trunk Highway System, had expanded to more than 111,000 kilometers by 

2015, making it the world's largest expressway system by length. 

The expansion of China’s national expressway network took place in several stages. The 

first expressway in China, constructed in 1984, connected two northern Chinese cities, 

Shenyang and Dalian. In 1992, the Chinese State Council approved the “5–7” (Wu Zong 

Qi Heng) expressway construction plan, which included five vertical (north-south) and 

seven horizontal (east-west) expressways with a total length of over 35,000 kilometers. 

The objective of the “5–7” network was to connect all provincial capitals and cities with 

an urban population of over 500,000 by 2020, and the network was completed in 2007, 13 

years ahead of schedule. 

In 2004, the State Council approved the construction of a larger expressway network 

called the “7–9–18” network, which comprises seven radial expressways connecting 

Beijing with other major cities, nine north–south vertical expressways and 18 east–west 

horizontal expressways. The “7–9–18” expressway network links all cities with an urban 

population of more than 200,000, major tourist cities, port cities, and expressways and 

railway hubs. The new target was achieved in 2011, nine years ahead of schedule. 
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Appendix Figure 1 illustrates the rapid expansion of China’s national expressways from 

1992 to 2010. 

Many peripheral counties lying in between major cities were also connected during this 

expansion. Our empirical strategy exploits this feature and compares the economic and 

environmental outcomes between connected and unconnected counties before and after 

expressway construction. More specifically, the treatment group consists of counties that 

were not targeted by the “National Expressway Network Plan” (2004) but were connected 

because they were located on expressway routes between metropolitan cities. Unconnected 

counties serve as the control group. The targeted cities are excluded from subsequent 

analysis because their expressway connections are clearly endogenous.11 In Figure 2, we 

present the targeted cities (including all city districts), connected counties, and unconnected 

counties, using different colors for 2000 and 2010. Because our county-level panel data 

cover 2000 to 2012, we exclude the 15% of counties that were already connected to national 

expressways before 2000, as they provide no variation in treatment status.  

Econometric Model  

   We start our analysis by estimating the average treatment effect of expressway 

connection on environmental and economic outcomes using a generalized difference-in-

differences (DiD) approach: 

KL,M = N + P ∗ RSTT%UVL,M + WM + XL + YL,M                          (1) 

where KL,M is an outcome of interest for county Z in year V; RSTT%UVL,M is a dummy indicator 

that equals 1 if county Z is connected in year V and 0 otherwise; WM is a time effect common 

to all counties in period t, XL is a time-invariant effect unique to county i; and YL,M is an error 

term independent of XL and WM. 
                                                
11 The targeted cities include cities with a population of over 200,000, tourist cities, port cities, and 

expressway and railway hubs. The “National Expressway Network Plan” (2004) referred to targeted cities as 
the “main controlling nodes”. The list of targeted cities is reported in Appendix Table A. Appendix Figure 1 
further shows the target cities on the map and draws the expansion of China’s national expressways from 
1992 to 2010.  
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We focus on four outcomes in each county: total and per capita emissions, and total and 

per capita GDP. We take the logarithms of the dependent variables so that the estimated 

coefficient represents the percentage change. An unbiased estimate of P requires that the 

pre-treatment trends for both control and treatment groups be parallel.  

To estimate the heterogeneous impacts of expressway connection, we interact the 

treatment dummy with initial income (per capita GDP in 2000) and estimate the following 

equation:  

KL,M = N + P ∗ RSTT%UVL,M + [ ∗ (\L,7FFF ∗ RSTT%UVL,M) + WM + XL + YL,M        (2) 

where \L,7FFF is the per capita GDP of county i in year 2000, and [ is the coefficient of the 

interaction.  

Identifying Assumptions 

   The routing of expressways is determined by the central and provincial governments. 

Although counties between major cities were not explicitly targeted by the National 

Expressway Network Plan (2004), we cannot assume that routings were created randomly. 

Because the decision-making process is not entirely transparent, a reasonable concern is 

that the routing choices may not be orthogonal to unobservable factors that may affect the 

outcomes.  

There are two hypotheses regarding the central government’s routing decisions. The first 

is that the central government connects counties based on time-invariant characteristics 

such as the geographic features of a region, the cost of building expressways, and the 

regional economic and political importance of a county. 12  However, this type of 

endogeneity does not threaten our identification. In the DiD setting, county fixed effects 

control for all time-invariant factors that may affect the likelihood of a county being 

                                                
12 In our data, the connected counties are different from the control counties even before they were 

connected. Connected counties are in general richer, larger and emit more effluents than the non-connected 
counties (see Table 1). This pattern was also documented in Faber (2014), which investigated the early stage 
of China’s expressway system. 
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connected. Year fixed effects further control for common shocks that affect all counties 

(such as national policies) in each year. Thus, as long as the treatment group and the control 

group follow parallel pre-treatment trends, P can still be identified. 

The second hypothesis is that the central government of China connects counties in 

response to local economic or political shocks. For example, would the government 

intentionally reroute an expressway to connect a county because it experienced a negative 

income shock in the previous year? This would threaten our identifying assumption 

(parallel pre-treatment trends), but we believe that this hypothesis is highly unlikely to be 

true, because the National Expressway Network was planned years before any county was 

connected. Moreover, as the central government did not change the routings prior to 

construction, there is no evidence that counties could manipulate expressway connections 

in their favor to cope with temporary economic shocks. Finally, both the “5–7” network 

and the “7–9–18” network were completed years ahead of schedule. A reasonable 

assumption is that a peripheral county would not have ex ante information on the exact 

time when it would be connected. Allowing for all of these considerations, the expressway 

connection to a specific county in a specific year is likely to be exogenous, conditional on 

county and year fixed effects.  

More formally, we can test the parallel-trend assumption using an event study approach, 

following Jacobson et al. (1993). The basic idea is that we can generate a set of leads and 

lags of the actual expressway access and test whether the leads of the treatments are 

statistically significantly different from zero. In Appendix B, we conduct this exercise and 

fail to reject that connected counties and unconnected counties follow similar trends.  
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IV. Data and Summary Statistics 

Pollution Data 

We collect county-level emissions data from China’s Environmental Survey and Reporting 

(ESR) database. The ESR database is maintained by the Ministry of Environmental 

Protection of China. It is used to monitor the polluting activities of all important polluting 

sources, including heavily polluting industrial firms, hospitals, residential pollutant 

discharging units, hazardous waste treatment plants and urban sewage treatment plants. 

When we refer to the “polluting sector”, we include all of these sources, regardless of the 

type of the industry.   

We use the ESR data from 2000 to 2012 in this study. During this period, the monitored 

polluting sources in total contribute 85% of total emissions of major pollutants in each 

county. The monitored polluting sources are required to report their environmental 

performance to county-level Environmental Protection Bureaus (EPBs) each year. Local 

EPBs then verify the data and also estimate emissions of major pollutants from 

unmonitored plants based on their total industrial output. The overall emission measures 

for major pollutants in each county are constructed by summing emission levels reported 

by monitored plants and estimated emission levels from unmonitored plants. The micro-

level emission data used in this study had been kept confidential for many years but 

recently became conditionally open to some researchers.13  

Emissions degrade environmental quality. Major pollutants in the ESR database include 

chemical oxygen demand (COD), ammonia nitrogen (NH3-N), sulfur dioxide (SO2), and 

nitrogen oxides (NOx). In our main analysis, we focus on COD emissions. COD is a 

widely-used water quality indicator that measures the oxygen required to oxidize soluble 

and particulate organic matter in water, in order to assess the effect of discharged 

                                                
13 More details of the data are described in Lin (2013), Cai et al. (2016), and Wu et al. (2017). 
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wastewater on the water environment.14 Higher COD levels mean a greater amount of 

oxidizable organic material in the sample, which will reduce dissolved oxygen levels. A 

reduction in dissolved oxygen can lead to anaerobic conditions, which are deleterious to 

higher aquatic life forms. 

Another reason why we focus on COD emissions is that almost all key pollution sources 

and industries produce and report COD emission levels (Lin, 2013; Sinkule and Ortolano, 

1995), whereas other pollutants, such as SO2, tend to be concentrated in a few industries 

that are tightly controlled by large state-owned enterprises (SOEs) in certain areas in China.  

We use total COD emissions and per capita COD emissions in each county as our 

primary outcome variables on emissions. Total COD emissions are the sum of COD 

emitted by the key polluting plants and the estimated COD emitted by other polluting 

plants. Per capita COD emissions are calculated by dividing the total COD emissions by 

the population. We also check the robustness of our results using COD emissions only from 

key polluting plants and supplement our analysis by further discussing the results of other 

emission measures, such as ammonia-nitrogen and SO2.  

Expressway Expansion Data 

   Historical GIS (geographical information systems) data on China’s National Expressway 

Network are collected from the PR China Administrative Spatio-Temporal Expressway 

Database (STED) from the ACASIAN Data Center at Griffith University. The database 

compiles information on China’s expressway routes for 1992, 1993, 1998, 2000, 2002, 

2003, 2005, 2007 and 2010. By combining the STED database with China’s county-level 

GIS data, we are able to identify which counties were connected in which year.15  

                                                
14 For example, COD abatement is used by the Chinese central government as a key performance indicator 

for assessing local government efforts on environmental protection. In China’s 11th Five-Year Plan (2006-
2010), COD was used as a primary criterion (the other being ammonia-nitrogen) for setting national 
abatement targets and performance appraisals. 

15 Details on identifying the treatment status of each county-year are discussed in Appendix C.  
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Socioeconomic Data 

   Finally, we collected county-level socioeconomic data from CEIC database, various 

statistical yearbooks in China, including provincial yearbooks, China City Statistical 

Yearbooks, and China County Statistical Yearbooks. GDP and per capita GDP are the two 

main outcomes of interest. 

Descriptive Statistics  

   We match all of the datasets at the county level from 2000 to 2012, during which the 

national expressway network expanded significantly. While only 11% counties had access 

to expressways in 2000, more than 50% counties were connected by 2012. 

The summary statistics of the main variables are reported in Table 1. We report the mean 

and standard deviations for all counties, (eventually) connected counties and unconnected 

counties in 2000 and 2012. Average COD emissions decreased by 39% (from 1,800 tons 

to 1,100 metric tons) from 2000 to 2012, while per capita GDP increased more than 

fivefold, from 4,900 yuan to 31,000 yuan. Many counties managed to reduce emissions 

while sustaining strong economic growth. 

The connected cities and non-connected cities were economically, geographically and 

environmentally different even before being connected. Connected counties are on average 

larger and more polluted than non-connected counties; in 2000, they were richer and more 

polluted. This observation suggests that county-level fixed effects must be controlled in an 

empirical approach.  
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V. Main Results 

Average Treatment Effect of Expressway Connection on Emissions 

In Table 2, we report the average treatment effect of expressway connection on COD 

emissions and GDP. Our baseline results are presented in Columns 1, 4, 7 and 10. County 

fixed effects and year fixed effects are included in these regressions. Column 1 shows that 

connected counties experienced an average reduction in total COD emissions of 18%. 

Column 4 shows that per capita COD emissions in connected counties decreased by 25%. 

Columns 7 and 10 summarize the results for GDP and per capita GDP. We observe that 

expressway connection does not have a statistically significant impact on GDP and per 

capita GDP.  

We check the robustness of these findings in a variety of specifications. In Columns 2, 

5, 8 and 11, for example, we control for provincial time trends and find similar results. In 

Columns 3, 6, 9 and 12, we include province-year fixed effects in the regressions. The 

effects of expressway connection on emission measures are robustly negative and 

statistically significant in all specifications. As shown in the table, we further check the 

robustness of estimates accuracy by clustering the standard errors at different levels, and 

we arrive at similar conclusions. 

Heterogeneous Effects of Expressway Connection  

   In this section, we explore the heterogeneous effects of expressway expansion on GDP 

and pollution with respect to initial income. We interact the expressway connection dummy 

with per capita GDP in 2000 (yuan, log) and include both the treatment dummy and the 

interaction term in the regressions. We summarize the results in Table 3. The estimated 

coefficients of the treatment dummy are all positive and statistically significant at the 1% 

level, while the coefficients of the interaction terms are all negative and statistically 

significant. The results in Columns 1 to 4 show that the impact of expressway access on 
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COD emissions is more negative in initially richer counties than in initially poor counties. 

Similarly, Columns 5–8 suggest that connection to expressways has a more negative impact 

on GDP (or GDP per capita) for initially richer counties.  

Table 3 shows that there are strong heterogeneous effects. However, we are unable to 

further infer the direction (or the sign) of these impacts without knowing the range of initial 

income levels. A more informative way is to predict the impacts at different initial income 

levels. In Figure 3, we plot the estimated heterogeneity based on Table 3 and calculate the 

predicted impacts (with their 95% confidence intervals) at different initial income levels. 

The upper panel shows the predicted impact on COD emissions, the central panel shows 

the predicted impact on GDP, and the bottom panel plots the distribution of the log of per 

capita GDP in 2000. A predicted impact of zero (highlighted by a red square) implies that 

expressway connection does not affect emissions or GDP at a given initial income level. A 

positive value means that emissions or GDP increases, while a negative value means it 

decreases. In Figure 3, we observe that expressway connection positively affected COD 

emissions for the poorest 25% counties and had a positive impact on GDP for the poorest 

50%. Both COD emissions and GDP decreased after expressway connection for initially 

rich counties. Counties with moderate levels of initial income, i.e., from the 25th to the 50th 

percentile, saw a decrease in total emissions and an increase in total GDP after expressway 

connection. Table 4 summarizes the predicted impacts of expressway connection at 

different initial per capita GDP quantiles. 

Note that we can also conduct a heterogeneity analysis with respect to initial COD 

emission levels. In our data, initial COD emissions and initial GDP are positively correlated 

across counties in 2000. Therefore, the heterogeneous impacts of expressway connection 

on emissions and GDP with respect to initial COD emission levels are analogous to the 

findings in Table 3; they are reported in the Appendix Table C. 
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Robustness Checks 

We check the robustness of our findings in several different ways. First, one caveat of 

using Equation (2) to estimate the heterogeneous impacts is that it imposes a strong 

functional form on the heterogeneity, i.e., the heterogeneity is a linear function of initial 

income. In particular, the linear specification restricts the impacts of highway access on 

emissions and income to at most three, rather than four, different combinations. We 

therefore estimate the heterogeneity using a more flexible specification by including a set 

of dummy variables that indicate different initial income groups in the connected counties 

and interacting the income group dummies with the treatment status:  

KL,M = N + P] ∗ ("TUS^%] ∗ RSTT%UVL,M) + WM + XL + YL,M,                       (3) 

where "TUS^%] is a set of dummies indicating different initial income groups based on per 

capita GDP in 2000.  

In light of the empirical findings in Table 4, we divide the (eventually) connected 

counties into five groups based on their per capita GDP levels in 2000: low income (0th–

10th percentile), medium-low income (10th–20th percentile), medium income (20th–40th 

percentile), medium-high income (40th–70th percentile), and high income group (70th–100th 

percentile). The regression results are summarized in Table 5. All of the findings remain 

the same: counties in the low-income group significantly increased their emissions and 

income levels after expressway connection, while counties in higher income groups 

witnessed reductions in both emissions and income levels, and no group of counties saw a 

statistically significant increase in emissions and a decrease in income at the same time. 

These results suggest that the heterogeneity we have found does not depend on the 

functional form we imposed in Equation (2).16 

Second, we probe the robustness of estimate accuracy by clustering the standard errors 

at three different levels: the county level, the province level and the county and province-

                                                
16 We discuss the identifying assumption for the heterogeneous effects and related tests in Appendix D.  
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year level (multi-way clustering, suggested by Cameron, Gelbach, and Miller, 2011). The 

three clustering methods deal with three different potential correlations in the error term. 

Clustering the standard errors at the county level controls for arbitrary correlations across 

different years for the same county; clustering at the province level controls for arbitrary 

correlations within a province; clustering at both the county and province-year levels 

accounts for correlations across different years within the same county and correlations 

across all of the counties in the same province-year. We find that the significance levels 

are unaffected by different approaches to clustering standard errors, as reported in Table 6.  

Third, we control for provincial time trends in the regressions (Column 2, 5, 8, 11 of 

Table 6) and find that the qualitative conclusions remain the same, although the estimated 

impacts become slightly smaller. Moreover, instead of including year fixed effects 

dummies, we include province-year fixed effects in the regressions in Columns 3, 6, 9 and 

12. The province-year fixed effects account for annual shocks that are common to all 

counties in a province and thus provide a very general way to control for confounding 

factors such as business cycles and differential trends and policies across provinces. The 

treatment effect is identified by within-province comparisons of outcomes of interest. In 

other words, the effect of the expressway connection is estimated by comparing the 

outcomes of two counties in the same province in the same year. We find that, even in this 

strictest case, expressway connections have strong heterogeneous impacts on COD 

emissions and GDP. 

Fourth, in Table 7, we provide the impacts of expressway expansion on several other 

emission measures. In Columns 1 to 4, we use COD emissions from the key polluting plants 

as the outcomes and find similar results. In Columns 5-8, we investigate ammonia-nitrogen 

(NH3-N) emissions.17 We consistently find that poor counties emit more ammonia-nitrogen 

and rich counties emit less after integration into a larger market. However, the data quality 

                                                
17 Ammonia-nitrogen is also an important measure of water pollution. It serves as a nutrient in water bodies 

and consumes large amounts of oxygen. As a result, rich ammonia-nitrogen is toxic to fish and other aquatic 
organisms and leads to eutrophication in the water. 
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for ammonia-nitrogen is relatively poor. For example, there are no data on ammonia-

nitrogen in 2000, and a few hundred counties are missing readings from 2006 to 2010. As 

a result, only around 80% of the total number of observations are available for estimation. 

Finally, we examine emissions of air pollutants such as nitrous oxides (NOx) and sulfur 

dioxide (SO2). We are unable to perform a comparable analysis on NOx as data are only 

available for years after 2006. However, SO2 emissions are available in all of the years in 

our study period, and thus we also provide the regression results for SO2 in Columns 9–12 

of Table 7. 

Roughly 70% of SO2 emissions were produced by the electricity and heating industries 

(mostly power plants), and the remaining 25–30% were emitted by the mineral products 

industry and the metal industry. Most plants in these industries belong to large state-owned 

enterprises (SOEs) and local county governments have little power to regulate them. 

Consequently, we expect the results for SO2 to be less consistent. Consistent with the 

expectation, the estimates in Columns 5–8 of Table 7 show that, while SO2 emissions 

decreased in connected counties on average, the heterogeneity results became statistically 

insignificant.  

Assessing the Spill-over Effect  

A general concern about the DiD approach is that, if the control group were somehow 

affected by the treatment through a spill-over, the estimate of the treatment effect could be 

biased and should be interpreted only as a relative effect. Accordingly, one may question 

whether our main results in Table 3 are driven by the spill-over effect of expressway 

connection on the unconnected counties. To understand how the potential spill-over effect 

could affect the interpretations of our findings, we focus on the counties that were never 

connected in the sample, and estimate the impacts of having at least one of the neighboring 

counties connected to the expressway system on emissions and GDP in these never-

connected counties. In practice, we apply Equations (1) and (2) to the subsample of 
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unconnected counties, substituting RSTT%UVL,M with a “neighbor connected” indicator that 

equals 1 if at least one of county i’s neighboring counties are connected at year t, and 0 

otherwise. The coefficients of this indicator and its interaction with the initial income 

would reveal the potential spill-over effect and its heterogeneity. 

The results are reported in Table 8. Columns 1–4 show that the spill-over effect on 

emission measures is statistically insignificant on average, and so is its heterogeneity across 

initial incomes.  Therefore, it is highly unlikely that the spill-over effect could be driving 

the heterogeneity in the expressway impact on emissions between connected and 

unconnected counties (Columns 2 and 4 in Table 3). 

Columns 5–8 show positive average impacts on the GDP measures of unconnected 

counties when neighboring counties are connected to expressways; these effects are more 

negative or less positive if the focal unconnected county has higher initial income. This 

heterogeneity does suggest that an expressway connection can affect the GDP of some 

unconnected counties, but it also suggests that the spill-over effect works against the 

heterogeneity pattern in the income effect in our main results (Table 3, Columns 6 and 8), 

rather than contributing to it. 

We can then conclude that our main results of heterogeneities across initial income levels 

in the emissions and income impacts of connection are not driven by the spill-over effect. 

Channels 

   To understand how the connected counties realized their different development strategies 

after the expressway connection, we examine how expressway connection affects several 

other outcome variables, following the regression specified in Equation (3). Leaving more 

detailed results to Appendix Table E, we highlight here the results for only two outcomes: 

COD emission intensity and the share of manufacturing industry in the local GDP. The 

emission intensity is the average emissions from the key polluting sources from each 
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dollar-value of output produced, measuring the cleanness of the polluting sector in each 

county. The share of manufacturing captures the industrial structure of each county. 

In Figure 4, we plot the predicted impacts of expressway connection on the two 

additional outcome variables, as well as the predicted impacts on emissions and GDP, 

across different initial incomes of the counties. The lines showing the impacts on emissions 

and emission intensity cross the horizontal zero impact benchmark from above at almost 

the same income level (at the 25th percentile), and so do the lines showing the impacts on 

GDP and the share of manufacturing industry in GDP (at the 50th percentile). This 

observation suggests that the heterogeneity in the impacts on emissions and income across 

different initial incomes could have been caused by changes in the cleanness of the 

polluting sector and in the local industrial structure. For initially poor counties, expressway 

connection increases income and emissions, which is accompanied by a more emission-

intensive polluting sector and expanded industrial manufacturing; for initially rich 

counties, connection decreases income and emissions, with the polluting sector becoming 

cleaner and the manufacturing industry shrinking; for the middle-income counties, after 

connection, the manufacturing industry grows, while the polluting sector becomes cleaner, 

generating an increase in local income and a decrease in emissions at the same time.  

Summary of Findings 

To summarize, we find that the poorest 25% of counties achieve higher incomes at the 

cost of environmental degradation, which supports Prediction 1. Expressway connection 

has negative impacts on both GDP and emissions for the richer 50% of counties, consistent 

with Prediction 2. The expressway connection increases GDP while reducing emissions for 

counties in medium-low-income counties (25th–50th percentiles) but never reduces GDP 

while increasing emissions, consistent with Prediction 3. These changes are accompanied 

by changes in the cleanness of polluting industries and in the local industrial structure. 

Combining all three pieces of evidence, we can also infer that expressway connection 



 

 
28 

expands rather than shrinks the possibility frontier, consistent with our interpretation of the 

expressway access as a positive productivity shock.  

 

VI. Alternative Explanations 

The empirical findings in this paper relate to two important theories in economic research: 

the pollution haven hypothesis and the home market effect. The pollution haven hypothesis 

proposes that market integration, which can be brought by transport infrastructure 

improvement, will cause polluting capital to flow from rich regions to poor regions. The 

economic rationale behind the hypothesis is realization of comparative advantage: low-

income regions have comparative advantage in polluting industries because they do not 

value environmental quality highly, while high-income regions have comparative 

advantage in non-polluting industries. As trade cost is reduced, both regions can specialize 

in producing products in which they have comparative advantages. The hypothesis can then 

explain our observation that expressway access causes 1) richer counties to pollute less and 

poor counties to pollute more, 2) more polluting firms to emerge in poor counties than in 

rich counties, and 3) poor counties to start to industrialize while rich counties start to 

deindustrialize. The hypothesis, however, cannot adequately explain the negative impact 

of the expressway access on income levels in rich counties. 

The home market effect conjectures that, because of economies of scale, market 

integration can cause mobile factors (e.g., capital, or even labor) that are formerly located 

in peripheral counties to move to core metropolitan areas to enjoy a larger home market. If 

the core-periphery relations are sufficiently asymmetric, this trade integration can reduce 

economic output in the peripheral counties (e.g., Faber, 2014). This argument can 

potentially explain the negative impacts of expressway connection on GDP and emissions 

in rich counties in our data, and could also provide an alternative to our interpretation of 

the expressway access as a positive productivity shock. As shown in Faber (2014), 
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however, the home market effect implies that the negative impact of expressway 

connection on industrial output and GDP should be even stronger if the core-periphery 

relation is more asymmetric, i.e., if the focal county is poorer. This prediction contradicts 

our empirical observation that expressway access decreases income in the rich counties 

while increasing income in the poor and middle-income counties.  

Another intuitive implication from the home market effect is that the impact of 

expressway connection depends on the distance between the peripheral county and the 

metropolitan area, i.e., the nearest target city in our context: the closer they are to each 

other, the stronger the potential negative income impact on the county will be (e.g., Faber, 

2014). We therefore test whether there exists such heterogeneity conditional on the existing 

income heterogeneity shown in Table 9. The result shows, first, that the expressway 

connection’s impact on the focal county’s income does not have statistically significant 

heterogeneity across different distances to the nearest target city. Second, adding the 

connection–distance interaction term into the regressions has hardly any impact on the 

estimates of the coefficient of the connection–initial income interaction term in all the 

regressions, which implies that the observed heterogeneity across initial incomes is not 

driven by variation in the distances between connected counties and their nearest target 

cities. These findings do not support the home market effect.  

As each of the theories can only partially explain our empirical findings and is 

inconsistent with part of the findings, one may propose a combination of them, i.e., the 

comparative advantage in polluting industry could be so strong in poor counties that the 

pollution haven hypothesis would dominate the home market effect, while this comparative 

advantage could be relatively weak in rich counties, so that the home market effect would 

dominate.18 However, this combination still leaves two empirical findings unexplained: 

                                                
18 For details of the argument, our analysis of a model of the new economic geography with location-

specific marginal cost of polluting industrial production, which derives a closed-form solution, is available 
upon request. Forslid et al. (Forthcoming) incorporate both the pollution haven hypothesis and the home 
market effect in a different model, which focuses on a strategic tax setting and does not yield a closed-form 
solution for the general case. 
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first, for moderate-income counties, expressway access increases income and decreases 

emissions; second, for any group of counties, expressway access never decreases income 

and increases emissions at the same time. Our theoretical framework with expressway 

access interpreted as a positive productivity shock, however, can reconcile these empirical 

findings without referring to the pollution haven hypothesis and home market effect. 

Given these considerations, although we acknowledge the potential relevance of the 

pollution haven hypothesis and the home market effect in our context, we conclude that 

our model provides a concise, consistent, and more general explanation of our empirical 

findings.  

 

VII. Conclusion 

This paper analyzes how society would adapt to changes in economic production 

conditions through the trade-off between environmental preservation and economic 

development. Theoretically, we show that a positive productivity change can lead to an 

increase or a decrease in income and pollution levels, and that the heterogeneity depends 

on the initial income (or pollution) level. Empirically, we find heterogeneity in both 

environmental and economic consequences of expressway connection across different 

initial levels of income (and emissions), consistent with the theory.  

Our findings have several policy implications. Firstly, the same type of productivity-

enhancing policy or economic shock can cause different regions to choose different 

development strategies, and the optimal emission–income combination depends on a 

region’s initial income or pollution levels. In the context of large income and 

environmental disparities, either within a large country such as China or India, or in a 

global platform consisting of developed and developing countries, a single unified 

economic or environmental policy can cause significant welfare losses. For example, tight 
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environmental standards favored by rich regions can harm the poor regions that prefer more 

polluting development strategies.  

Secondly, although a highly-diversified policy portfolio across different regions may be 

seen as optimal, this portfolio may nonetheless be susceptible to criticism from 

environmental organizations, which seek general improvement in environmental quality, 

or from parties that primarily focus on GDP growth and raising income. This could lead to 

political conflicts due to the variations in policy preferences regarding the trade-off 

between development and the environment across different income groups. As a result, 

redistributive policies can not only be a solution to the long-standing income inequality 

issue in China, but also can be useful for addressing the increasing challenges of political 

issues related to the environment.  

Thirdly, the theoretical model also predicts that a positive economic productivity shock 

can degrade environmental quality in the initial stages of economic development. We may 

see a further deterioration of global environmental quality because many less-developed 

countries have not yet reached the middle-income level at which a win-win response in 

pecuniary income and environmental quality would emerge. One remedy for this challenge 

could be to introduce intense economic productivity shocks to less-developed countries to 

allow them to achieve the middle-income level within a short period of time. In practice, 

technology transfer from rich countries to poor countries or infrastructural improvements 

in poor countries are potentially effective solutions. 

Recognizing the simplicity of our theoretical framework and its power to reconcile the 

empirical findings, we conclude by pointing out some directions for further investigation. 

In our model, we assume that the environmental impacts of emissions are local, while 

pollution in one region can in reality affect social welfare in neighboring regions as well. 

In such cases, a welfare-maximizing growth path at the aggregate level depends on the 

specific patterns of the externality. Besides, without a detailed micro-foundation of the 

possibility frontier, it is also difficult for the framework to specify the channels through 
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which the negative impacts of expressway on income and emissions in richer counties are 

manifested. Therefore, more assumptions about the possibility frontier, e.g., considering 

the interaction between the inside and outside of the focal county could help to more clearly 

explain the mechanisms behind the empirical pattern we have observed.  

  



 

 
33 

REFERENCES 

Alder, Simon. 2017. “Chinese Roads in India: The Effect of Transport Infrastructure on 
Economic Development.” Working paper. 

Arrow, Kenneth, Bert Bolin, Robert Costanza, Partha Dasgupta, Carl Folke, C.S. Holling, 
Bengt-Owe Jansson, Simon Levin, Karl-Goran Maler, Charles Perrings, and David 
Pimentel. 1995. “Economic Growth, Carrying Capacity, and the Environment.” 
Science, 268(5210): 520-521.  

Bai, Chong-En, Chang-Tai Hsieh, and Zheng Michael Song. 2014. “Crony capitalism with 
Chinese characteristics”. Working paper. 

Banerjee, Abhijit, Esther Duflo, and Nancy Qian. 2012. “On the Road: Access to 
Transportation Infrastructure and Economic Growth in China.” National Bureau of 
Economic Research Working Paper.  

Baum-Snow, Nathaniel. 2007. “Did Highways Cause Suburbanization?” Quarterly 
Journal of Economics, 122(2): 775–805. 

Baum-Snow, Nathaniel. 2014. “Urban Transport Expansions, Employment 
Decentralization, and the Spatial Scope of Agglomeration Economies.” Working 
paper. 

Baum-Snow, Nathaniel, Loren Brandt, J. Vernon Henderson, Matthew A. Turner, and 
Qinghua Zhang. 2016a. “Roads, Railroads and Decentralization of Chinese Cities.” 
Working Paper. 

Baum-Snow, Nathaniel, Vernon Henderson, Matthew A. Turner, Qinghua Zhang, and 
Loren Brandt. 2016b. “High-ways, Market Access, and Urban Growth in China.” 
Working paper. 

Cai, Hongbin, Yuyu Chen, and Qing Gong. 2016. “Polluting the Neighbor: Unintended 
Consequences of Chinas Pollution Reduction Mandates.” Journal of Environmental 
Economics and Management, 76: 86–104. 

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2011. “Robust Inference 
with Multiway Clustering.” Journal of Business & Economic Statistics, 29(2): 238–
249. 

Chakravorty, Ujjayant N., Xiangzheng Deng, Yazhen Gong, Martino Pelli, and Zhang 
Qian. 2015. “Roads and Resources: Groundwater Depletion in Lankao Country in the 
North China Plains.” Working paper. 

Chandra, Amitabh, and Eric Thompson. 2000. “Does Public Infrastructure Affect 
Economic Activity? Evidence from the Rural Interstate Highway System.” Regional 
Science and Urban Economics, 30(4): 457–490. 

Chomitz, Kenneth M., and David A. Gray. 1996. “Roads, Land Use, and Deforestation: A 
Spatial Model Applied to Belize.” World Bank Economic Review, 10(3): 487–512. 

Copeland, Brian R., and M. Scott Taylor. 2004. “Trade, Growth, and the Environment.” 
Journal of Economic Literature, 42(1): 7–71. 



 

 
34 

Cropper, Maureen, Jyotsna Puri, and Charles Griffiths. 2001. “Predicting the Location of 
Deforestation: The Role of Roads and Protected Areas in North Thailand.” Land 
Economics, 77(2): 172–186. 

Dasgupta, Susmita, Benoit Laplante, Hua Wang, and David Wheeler. 2002. “Confronting 
the Environmental Kuznets Curve.” Journal of Economic Perspectives, 16(1): 147–
168.  

Datta, Saugato. 2012. “The Impact of Improved Highways on Indian Firms.” Journal of 
Development Economics, 99(1): 46–57.  

Deng, Xiangzheng, Jikun Huang, Emi Uchida, Scott Rozelle, and John Gibson. 2011. 
“Pressure Cookers or Pressure Valves: Do Roads Lead to Deforestation in China?” 
Journal of Environmental Economics and Management, 61(1): 79-94.  

Dinda, Soumyananda. 2004. “Environmental Kuznets Curve Hypothesis: A Survey.” 
Ecological Economics, 49(4): 431 – 455. 

Donaldson, Dave. 2017. “Railroads of the Raj: Estimating the Impact of Transportation 
Infrastructure.” American Economic Review, forthcoming. 

Donaldson, Dave, and Richard Hornbeck. 2016. “Railroads and American Economic 
Growth: A Market Access Approach.” Quarterly Journal of Economics, 131(2): 799–
858. 

Duranton, Gilles, and Matthew A. Turner. 2012. “Urban Growth and Transportation.” 
Review of Economic Studies, 79(4): 1407–1440.  

Duranton, Gilles, Peter M. Morrow, and Matthew A. Turner. 2014. “Roads and Trade: 
Evidence from the US.” Review of Economic Studies, 81(2): 681–724.  

Ederington, Josh, Arik Levinson, and Jenny Minier. 2005. “Footloose and Pollution-Free.” 
Review of Economics and Statistics, 87(1): 92–99.  

Eskeland, Gunnar S., and Ann E. Harrison. 2003. “Moving to Greener Pastures? 
Multinationals and the Pollution Haven Hypothesis.” Journal of Development 
Economics, 70(1): 1–23.  

Faber, Benjamin. 2014. “Trade Integration, Market Size, and Industrialization: Evidence 
from China’s National Trunk Highway System.” Review of Economic Studies, 81(3): 
1046–1070.  

Forslid, Rikard, Toshihiro Okubo, and Mark Sanctuary. Forthcoming. “Trade 
Liberalisation, Transboundary Pollution and Market Size.” Journal of the Association 
of Environmental and Resource Economists. 

Frankel, Jeffrey A., and Andrew K. Rose. 2005. “Is Trade Good or Bad for the 
Environment? Sorting Out the Causality.” Review of Economics and Statistics, 87(1): 
85–91.  

Frye, Dustin. 2016. “Transportation Networks and the Geographic Concentration of 
Industry.” Working paper. 

Ghani, Ejaz, Arti Grover Goswami, and William R. Kerr. 2016. “Highway to Success: The 
Impact of the Golden Quadrilateral Project for the Location and Performance of Indian 
Manufacturing.” Economic Journal, 126(591): 317–357.  



 

 
35 

Greenstone, Michael, and B. Kelsey Jack. 2015. “Envirodevonomics: A Research Agenda 
for an Emerging Field.” Journal of Economic Literature, 53(1): 5–42. 

Grossman, Gene M., and Alan B. Krueger. 1995. “Economic Growth and the 
Environment.” Quarterly Journal of Economics, 110: 353–378. 

Harbaugh, William T., Arik Levinson, and David Molloy Wilson. 2002. “Reexamining the 
Empirical Evidence for an Environmental Kuznets Curve.” Review of Economics and 
Statistics, 84(3): 541–551. 

Helpman, Elhanan, and Paul R. Krugman. 1985. Market Structure and Foreign Trade: 
Increasing Returns, Imperfect Competition, and the International Economy. 
Cambridge, Massachusetts: MIT Press. 

Holl, Adelheid. 2004. “Manufacturing Location and Impacts of Road Transport 
Infrastructure: Empirical Evidence from Spain.” Regional Science and Urban 
Economics, 34(3): 341–363. 

Hung, HM James, Robert T. O'Neill, Peter Bauer, and Karl Kohne. “The Behavior of the 
P-value When the Alternative Hypothesis Is True.” Biometrics 53(1): 11–22. 

Jaffe, Adam B., Steven R. Peterson, Paul R. Portney, and Robert N. Stavins. 1995. 
“Environmental Regulation and the Competitiveness of U.S. Manufacturing: What 
Does the Evidence Tell Us?” Journal of Economic Literature, 33(1): 132–163.  

Jaworski, Taylor, and Carl T. Kitchens. 2016. “National Policy for Regional Development: 
Evidence from Appalachian Highways.” National Bureau of Economic Research 
Working Paper. 

Jeppesen, Tim, John A. List, and Henk Folmer. 2002. “Environmental Regulations and 
New Plant Location Decisions: Evidence from a Meta-Analysis.” Journal of Regional 
Science, 42(1): 19–49. 

Kaczan, David J., Brent M. Swallow, and W.L. (Vic) Adamowicz. 2016. “Forest 
Conservation Policy and Motivational Crowding: Experimental Evidence from 
Tanzania.” Ecological Economics, In Press.  

Karp, Larry. 2011. “The Environment and Trade.” Annual Review of Resource Economics, 
3(1): 397–417.  

Krugman, Paul. 1980. “Scale Economies, Product Differentiation, and the Pattern of 
Trade.”  American Economic Review 70 (5): 950-959. 

Krugman, Paul. 1991. “Increasing Returns and Economic Geography.” Journal of Political 
Economy, 99 (3): 483–499.  

Levinson, Arik. 1996. “Environmental Regulations and Manufacturers’ Location Choices: 
Evidence from the Census of Manufactures.” Journal of Public Economics, 62(12): 5–
29.  

Levinson, Arik. 2009. “Technology, International Trade, and Pollution from US 
Manufacturing.” American Economic Review, 99(5): 2177–2192.  

Levinson, Arik, and M. Scott Taylor. 2008. “Unmasking the Pollution Haven Effect.” 
International Economic Review, 49(1): 223–254.  



 

 
36 

Lin, Liguo. 2013. “Enforcement of Pollution Levies in China.” Journal of Public 
Economics, 98: 32–43. 

Managi, Shunsuke, Akira Hibiki, and Tetsuya Tsurumi. 2009. “Does Trade Openness 
Improve Environmental Quality?” Journal of Environmental Economics and 
Management, 58(3): 346–363. 

McGuire, Martin C. 1982. “Regulation, Factor Rewards, and International Trade.” Journal 
of Public Economics, 17(3): 335–354. 

Michaels, Guy. 2008. “The Effect of Trade on the Demand for Skill: Evidence from the 
Interstate Highway System.” Review of Economics and Statistics, 90(4): 683–701. 

Millimet, Daniel L., John A. List, and Thanasis Stengos. 2003. “The Environmental 
Kuznets Curve: Real Progress or Misspecified Models?” Review of Economics and 
Statistics, 85(4): 1038–1047. 

Nelson, Gerald C., and Daniel Hellerstein. 1997. “Do Roads Cause Deforestation? Using 
Satellite Images in Econometric Analysis of Land Use.” American Journal of 
Agricultural Economics, 79(1): 80–88. 

Pethig, Rüdiger. 1976. “Pollution, Welfare, and Environmental Policy in the Theory of 
Comparative Advantage.” Journal of Environmental Economics and 
Management, 2(3): 160–169. 

Pfaff, Alexander S.P. 1999. “What Drives Deforestation in the Brazilian Amazon? 
Evidence from Satellite and Socioeconomic Data.” Journal of Environmental 
Economics and Management, 37(1): 26–43. 

Qian, Yingyi, and Gérard Roland. 1998. “Federalism and the Soft Budget 
Constraint.” American Economic Review 88(5): 1143–1162. 

Qin, Yu. 2016. “No County Left Behind? The Distributional Impact of High-speed Rail 
Upgrades in China.” Journal of Economic Geography, 1–32. 

Rothenberg, Alexander D. 2013. “Transport Infrastructure and Firm Location Choice in 
Equilibrium: Evidence from Indonesia’s Highways.” Working paper. 

Siebert, Horst. 1977. “Environmental Quality and the Gains from Trade.” Kyklos, 30(4): 
657–673. 

Sinkule, Barbara J., and Leonard Ortolano. 1995. Implementing Environmental Policy in 
China. Greenwood Publishing Group.  

Stern, David I. 2004. “The Rise and Fall of the Environmental Kuznets Curve.” World 
Development, 32(8): 1419–1439.  

Stern, David I. 2010. “Between Estimates of the Emissions-income Elasticity.” Ecological 
Economics, 69(11): 2173–2182.  

Wu, Haoyi, Huanxiu Guo, Bing Zhang, and Maoliang Bu. 2017. “Westward Movement of 
New Polluting Firms in China: Pollution Reduction Mandates and Location Choice.” 
Journal of Comparative Economics, 45(1): 119–138.  

Yandle, Bruce, Madhusudan Bhattarai, and Maya Vijayaraghavan. 2004. “Environmental 
Kuznets Curves: A Review of Findings, Methods, and Policy Implications.” Property 
and Environment Research Center Research Study 02-1.  



 

 
37 

Zheng, Siqi, and Matthew E. Kahn. 2013. “Chinas Bullet Trains Facilitate Market 
Integration and Mitigate the Cost of Megacity Growth.” Proceedings of the National 
Academy of Sciences, 110(14): E1248–E1253. 

 

 



 

 
38 

  
PANEL A. INTERIOR SOLUTION PANEL B. DECREASED POLLUTION AND INCOME 

  
PANEL C. INCREASED POLLUTION AND INCOME PANEL D. INCREASED INCOME AND DECREASED POLLUTION 

FIGURE 1. THE EFFECT OF A POSITIVE PRODUCTIVITY SHOCK ON THE INCOME AND ENVIRONMENTAL QUALITY
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PANEL A. CHINA’S NATIONAL EXPRESSWAYS IN 2000 

 

PANEL B. CHINA’S NATIONAL EXPRESSWAYS IN 2012 

FIGURE 2. EXPANSION OF THE NATIONAL EXPRESSWAY SYSTEM IN CHINA 
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FIGURE 3. PREDICTED HETEROGENEOUS EFFECT OF EXPRESSWAY CONNECTION ON EMISSIONS AND GDP 
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FIGURE 4. EXPLORE THE CHANNELS OF THE HETEROGENEOUS EFFECTS 
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Table 1. Summary statistics of sampled counties 
Variable Mean Connected Unconnected 
COD emissions in 2000 (metric tons) 1,831 2,322 1,241 
 (4,817) (5,550) (3,667) 
COD emissions in 2012 (metric tons) 1,123 1,392 788 
 (2,255) (2,727) (1,396) 
GDP in 2000 (million yuan) 2,582 2,990 2,094 
 (5,722) (2,938) (7,825) 
GDP in 2012 (million yuan) 15,108 17,452 12,286 
 (31,953) (18,322) (42,815) 
GDP per capita in 2000 (yuan) 4,912 5,396 4,327 
 (4,356) (4,002) (4,686) 
GDP per capita in 2012 (yuan) 30,819 32,481 28,806 
 (32,808) (30,819) (34,982) 
Population in 2000 (thousand) 485 555 400 
 (453) (349) (542) 
Population in 2012 (thousand) 500 576 407 
�  (420) (383) (445) 
Source: Standard deviations are reported in the parentheses below the means. COD emission data are collected from 
the Environmental Statistics Database (2000-2012) of the Ministry of Environmental Protection of China. County-
level GDP and population data are collected from various sources including various provincial statistical yearbooks, 
China City Statistical Yearbooks, China County Statistical Yearbooks and the China Economic Data Database from 
CEIC (www.ceicdata.com). 
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Table 2. The average treatment effects of expressway connection on COD emissions and GDP 
 COD emissions (tons, log) Per capita COD emissions (kg, log) GDP (million yuan, log) Per capita GDP (yuan, log) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Expressway -0.18*** -0.15*** -0.15** -0.25*** -0.21*** -0.21*** -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 
 (0.06) (0.06) (0.06) (0.07) (0.07) (0.07) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
 (0.06) (0.04) (0.04) (0.07) (0.04) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) 
 (0.07) (0.07) (0.07) (0.08) (0.07) (0.08) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
County FE Y Y Y Y Y Y Y Y Y Y Y Y 
Year FE Y Y N Y Y N Y Y N Y Y N 
Provincial trends N Y N N Y N N Y N N Y N 
Province-year FE N N Y N N Y N N Y N N Y 
Obs. 18,810 18,810 18,810 18,378 18,378 18,378 19,835 19,835 19,835 19,472 19,472 19,472 
R2 0.08 0.12 0.16 0.08 0.13 0.17 0.91 0.92 0.93 0.90 0.92 0.93 
Notes: This table estimates the impacts of expressway connection on COD emissions using a variety of specifications. We probe the robustness of estimate accuracy by 
clustering the standard errors at three different levels: the county, province and county and province-year levels (multi-way clustering suggested by Cameron, Gelbach, and 
Miller (2011)). These standard errors are respectively reported in the parentheses below the estimated coefficients. Our preferred specification clusters standard errors at the 
county level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3. Heterogeneous treatment effect with respect to initial income 

 COD emission (tons, 
log) 

Per capita COD 
emission (kg, log) 

GDP (million yuan, 
log) 

Per capita GDP 
(yuan, log) 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway -0.18*** 2.77*** -0.25*** 3.27*** -0.01 0.91*** -0.01 1.16*** 
 (0.06) (0.72) (0.07) (0.78) (0.01) (0.18) (0.01) (0.19) 
Expressway*GDP pc  -0.35***  -0.42***  -0.11***  -0.14*** 
(yuan, log, in 2000)  (0.08)  (0.09)  (0.02)  (0.02) 
County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 
Obs. 18,810 18,179 18,378 18,007 19,835 19,213 19,472 19,091 
R2 0.08 0.08 0.08 0.08 0.91 0.91 0.90 0.90 
Notes: This table estimates the heterogeneous impacts of expressway connection on COD emissions and GDP. Standard 
errors are clustered at the county level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** 
p<0.05, * p<0.1. 
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Table 4. Predicted effect of expressway connection at different initial income levels 
Per capita GDP percentile in 
2000 

Effect on COD 
emissions 

Effect on per capita 
COD emissions Effect on GDP Effect on per capita 

GDP 
 (1) (2) (3) (4) 
1% (log = 6.886) 0.33** 0.36** 0.15*** 0.19*** 
 (0.15) (0.16) (0.03) (0.03) 
5% (log = 7.211) 0.22* 0.23* 0.11*** 0.15*** 
 (0.12) (0.13) (0.03) (0.03) 
10% (log = 7.428) 0.14 0.15 0.09*** 0.12*** 
 (0.11) (0.12) (0.03) (0.03) 
25% (log = 7.817) 0.00 0.03 0.04** 0.06*** 
 (0.08) (0.09) (0.03) (0.03) 
50% (log = 8.236) -0.14** -0.21*** 0.00 0.00 
 (0.07) (0.07) (0.01) (0.01) 
75% (log = 8.687) -0.3*** -0.40*** -0.05*** -0.06*** 
 (0.07) (0.07) (0.02) (0.02) 
90% (log = 9.106) -0.45*** -0.57*** -0.10*** -0.12*** 
 (0.08) (0.09) (0.02) (0.02) 
95% (log = 9.360) -0.54*** -0.56*** -0.13*** -0.16*** 
 (0.10) (0.11) (0.03) (0.03) 
99% (log=9.895) -0.73*** -0.91*** -0.19*** -0.23*** 
 (0.14) (0.15) (0.04) (0.04) 
Notes: This table summarizes the predicted impacts of expressway connection on COD emissions and GDP at different initial 
per capita GDP levels using regression results in Table 3. Standard errors are clustered at the county level and reported in the 
parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. Heterogeneous treatment effect with respect to different initial income groups 

 COD emissions 
(tons, log) 

Per capita COD 
emissions (kg, log) 

GDP (million 
yuan, log) 

Per capita GDP 
(yuan, log) 

 (1) (2) (3) (4) 
Low*Expressway 0.34** 0.37* 0.21*** 0.25*** 
 (0.17) (0.19) (0.04) (0.04) 
Med Low*Expressway 0.07 -0.01 0.05* 0.06** 
 (0.15) (0.16) (0.03) (0.03) 
Med*Expressway -0.20 -0.27* -0.04** -0.04** 
 (0.14) (0.16) (0.02) (0.02) 
Med High*Expressway -0.19* -0.26** -0.08*** -0.07*** 
 (0.10) (0.11) (0.02) (0.02) 
High*Expressway -0.44*** -0.56*** -0.05 -0.07*** 
(yuan, log, in 2000) (0.10) (0.11) (0.03) (0.03) 
County FE Y Y Y Y 
Year FE Y Y Y Y 
Obs. 18,810 18,378 19,835 19,472 
R2 0.08 0.08 0.91 0.90 
Notes: This table estimates the heterogeneous impacts of expressway connection on COD emissions and GDP. Standard errors 
are clustered at the county level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * 
p<0.1. 
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Table 6. Robustness checks: heterogeneous treatment effect with respect to initial income 

 COD emissions (ton, log) Per capita COD emissions (kg, 
log) GDP (million yuan, log) Per capita GDP (yuan, log) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Expressway 2.77*** 1.58** 1.88** 3.27*** 1.73** 2.06** 0.91*** 0.56*** 0.55*** 1.16*** 0.80*** 0.80*** 
 (0.72) (0.74) (0.74) (0.78) (0.81) (0.82) (0.18) (0.16) (0.16) (0.19) (0.16) (0.16) 
 (0.87) (0.70) (0.69) (0.96) (0.79) (0.77) (0.32) (0.27) (0.27) (0.34) (0.25) (0.25) 
 (0.79) (0.76) (0.83) (0.86) (0.84) (0.91) (0.23) (0.19) (0.20) (0.24) (0.19) (0.20) 
Expressway*GDP per capita -0.35*** -0.21** -0.25*** -0.42*** -0.23** -0.27*** -0.11*** -0.07*** -0.07*** -0.14*** -0.10*** -0.10*** 
(yuan, log, in 2000) (0.08) (0.09) (0.09) (0.09) (0.10) (0.10) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
 (0.10) (0.08) (0.08) (0.11) (0.10) (0.09) (0.04) (0.03) (0.03) (0.04) (0.03) (0.03) 
 (0.09) (0.09) (0.10) (0.10) (0.10) (0.11) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02) 
County FE Y Y Y Y Y Y Y Y Y Y Y Y 
Year FE Y Y N Y Y N Y Y N Y Y N 
Provincial trends N Y N N Y N N Y N N Y N 
Province-year FE N N Y N N Y N N Y N N Y 
Obs. 18,179 18,179 18,179 18,007 18,007 18,007 19,213 19,213 19,213 19,091 19,091 19,091 
R2 0.08 0.12 0.16 0.08 0.13 0.17 0.91 0.92 0.93 0.90 0.92 0.93 
Notes: This table estimates the heterogeneous impacts of expressway connection on COD emissions and GDP using a variety of specifications. We probe the robustness of 
estimate accuracy by clustering the standard errors at three different levels: the county, province and county and province-year levels (multi-way clustering suggested by 
Cameron, Gelbach, and Miller (2011)). These standard errors are respectively reported in the parentheses below the estimated coefficients. Our preferred specification 
clusters standard errors at the county level. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 7. The effects of expressway connection on other emission measures 

  

COD Emissions 
from Key Polluting 

Firms (ton, log) 

Per capita COD 
Emissions from Key 
Polluting Firms (kg, 

log) 

NH3-N Emissions 
(ton, log) 

Per capita NH3-N 
Emissions (kg, log) 

SO2 Emissions 
(ton, log) 

Per capita SO2 
Emissions (kg, log) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Expressway -0.12* 3.39*** -0.19*** 3.93*** 0.03 4.30*** -0.01 5.28*** -0.11** -0.19 -0.13*** -0.01 

 (0.06) (0.75) (0.07) (0.81) (0.08) (1.02) (0.09) (1.16) (0.04) (0.53) (0.05) (0.54) 
Expressway*GDP pc  -0.42***  -0.49***  -0.51***   -0.63***   0.01  -0.01 

(yuan, log, in 2000)  (0.09)   (0.10)  (0.12)   (0.14)   (0.06)  (0.06) 
County FE Y Y Y Y Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y Y Y Y Y 
Obs. 18,810 18,179 18,378 18,007 15,962 15,425 15,595 15,257 18,726 18,096 18,295 17,924 
R2 0.09 0.09 0.09 0.09 0.12 0.12 0.15 0.15 0.14 0.14 0.13 0.12 
Notes: This table estimates the heterogeneous impacts of expressway connection on other emission measures. Standard errors are clustered at county level and 
reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 8. Assessing Potential Spill-overs 

  
COD Emissions 

(ton, log) 
 Per capita COD 

Emissions (kg, log) 
GDP (million yuan, 

log) 
Per capita GDP  

(yuan, log) 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Neighbor-connected -0.04 0.35 -0.09 0.91 0.06*** 0.68** 0.07*** 0.93*** 

 (0.10) (1.11) (0.12) (1.27) (0.02) (0.28) (0.02) (0.28) 
Neighbor-connected*GDP pc  -0.05  -0.13  -0.08**  -0.11*** 

(yuan, log, Year 2000)  (0.14)   (0.16)  (0.04)  (0.03) 
County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 
Obs. 7,894 7,683 7,711 7,632 8,974 8,732 8,773 8,688 
R2 0.09 0.10 0.10 0.10 0.90 0.90 0.89 0.90 
Notes: This table estimates the potential spillover effects of expressway connection. We keep only the unconnected counties 
and create a “neighbor connected” indicator that equals to 1 if at least one of an unconnected county's neighboring counties is 
connected by the expressways. We include the interaction term to explore potential spillover heterogeneity with respect to 
initial income levels. Standard errors are clustered at county level and reported in the parentheses below the estimated 
coefficients. *** p<0.01, ** p<0.05, * p<0.1. 

 
  



 

 
50 

 
Table 9. Heterogeneity with respect to distance to target cities 

  
COD Emissions (ton, 

log) 
 Per capita COD 

Emissions (kg, log) 
GDP (million yuan, 

log) 
Per capita GDP 

(yuan, log) 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway 2.77*** 2.52*** 3.27*** 2.99*** 0.97*** 0.93*** 1.14*** 1.09*** 

 (0.72) (0.74) (0.78) (0.80) (0.18) (0.19) (0.19) (0.20) 
Expressway*GDP pc -0.35*** -0.35*** -0.42*** -0.42*** -0.12*** -0.11*** -0.14*** -0.13*** 
(yuan, log, Year 2000) (0.08) (0.09) (0.09) (0.09) (0.02) (0.02) (0.02) (0.02) 
Expressway*Distance  0.04*  0.04*  0.00  0.00 
(10km)  (0.02)   (0.02)  (0.00)  (0.00) 
County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 
Obs. 18,179 17,987 18,007 17,818 16,564 16,394 16,462 16,292 
R2 0.08 0.08 0.08 0.08 0.91 0.91 0.91 0.91 
Notes: Standard errors are clustered at county level and reported in the parentheses below the estimated coefficients. *** 
p<0.01, ** p<0.05, * p<0.1. 
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Online Appendices to “Balancing Development and the Environment in a 

Changing World: Expressways, GDP, and Pollution in China” 

A. Proofs of Predictions 

Mathematically, the impact of a productivity change on the choice of emissions can be 

derived by totally differentiating the first-order condition: 
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+ ≡ %&&'&( − 2%&('& + %&'&& + %(( < 0                                      (8) 

is the second-order condition for interior solutions. Thus the total effect on emissions is 

positive, if and only if  
%&&
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'( + '&( > 0. 

 

We first observe that any solution to this model occurs along the possibility frontier, 

determined by the economic production function, 3 ≡ ' ", # . This identity derives the 

following proposition: 

Proposition 1. A positive productivity shock increases pecuniary income unless its 

impact on emissions is sufficiently negative, i.e., 45
46
< 0	 if and only if 48

46
< − 9:

9;
< 0. It is 

then impossible for a positive productivity shock to simultaneously increase emissions 

and reduce pecuniary income.  

Proof: The identity gives 45
46
≡ 49 8,6

46
= '&

48

46
+ '( < 0	 if and only if 48

46
< − 9:

9;
.                   

Note '& > 0 and '( > 0. The result follows.                                           □ 

We then characterize the impacts of a positive productivity shock on emissions and 

pecuniary income when the initial pecuniary income or emissions are sufficiently low: 
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Proposition 2. If the initial pecuniary income or emissions are sufficiently low, then a 

positive productivity shock increases emissions, i.e.,  3 and " are thresholds such that, if 

3 ≤ 3 and " ≤ ", then 48
46
> 0 and 45

46
> 0, where 3 = ' ", # . 

Proof. First observe that '&( 0, # > 0. Suppose '&( 0, #′ ≤ 0 for some #′. Since 

'&( 0, #′ ≠ 0, '&( 0, #′ < 0. Since '(", #) is continuously differentiable, there are "′ 

and #′′ such that '&( ", # < 0 for any 0 ≤ " ≤ "′ and #′ ≤ # ≤ #′′. Thus for any 0 < " ≤

"′, '& ", #′′ ≡ '& ", #A + '&( ", # !#
6BB

6B < '& ", #′ . Therefore, ' ", #′′ =

'& C, #′′ !C
8
D < '& C, #′ !C

8
D = ' ", #A , contrasting '( ", # > 0, as #A ≤ #′′.Hence 

'&( 0, # > 0. 

Also note that E;;
E;
'& −

E;:
E;

 is finite. To illustrate this, E;;
E;
'& −

E;:
E;
= 	 E;;

E;

E:
E;
	− E;:

E;
=

E;;E:FE;:E;
E;
: =

G FH:
H;

G5
, which is finite. Therefore, as e → 0, i.e., as 3 ≡ ' ", # ≡

'& C, # !C
8
D → 0,  

 E;;
E;
'& −

E;:
E;

'( + '&( ≡
E;;
E;
'& −

E;:
E;

'&( C, # !C
8
D + '&( → '&( 0, # > 0        (4) 

Hence as " → 0, i.e., as 3 → 0, 48
46
> 0. By Proposition 1, 45

46
> 0.                     □ 

The intuition of this proposition can be illustrated by an extreme case in which the 

initial income is exactly zero, as shown in Appendix Figure 2. Firstly, a positive 

productivity shock does not substantially shift the possibility frontier around the initial 

solution when the initial income is low. In an extreme case in which the initial income is 

zero, as represented by the black dot in Appendix Figure 2, this shift does not make a 

difference, as shown by the equivalence of the grey and white dots. In other words, the 

expansion effect in the impact of a positive productivity shock is limited, meaning the 

substitution effect determines the direction of this impact. 

Secondly, consider the substitution effect. An outward shift of the possibility frontier 

suggests that the frontier must be flattened when the initial allocation of environmental 
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resources to economic production is low, i.e., when the initial income is low. The 

marginal productivity of environmental resources in generating pecuniary income then 

increases. The decision-maker then chooses a combination of higher emissions, lower 

environmental quality, and higher pecuniary income in response to this increase.  

Proposition 2 also implies that the adoption of cleaner technology in economic 

production, which shifts the possibility frontier outward, can also increase total emissions 

if the initial income and emissions are sufficiently low. 

Proposition 2 raises another question: could the impacts of economic shocks on 

pecuniary income and emissions ever be negative? The decision-maker’s problem, 

equation (1), is equivalent to 

 max
5
				% 3, N ≡ % 3, O − P 3, # 					s. t.				0 ≤ 3 ≤ ' O, #             (5) 

where P . , .  satisfies that P ' ", # , # = " . Note that P& = 1/'& > 0 ; P( 0, # = 0 ; 

P( 3, # < 0  for any 3 > 0 ; P&( =
9:9;;F9;:9;

9;
U > 0  if and only if '&(  is sufficiently 

negative. 

Assuming interior solutions, the first-order condition of the problem above is 

 %& 3, O − P 3, # − %( 3, O − P 3, # P& 3, # = 0.                (6) 

The second-order condition is 

 V ≡ %&& − 2%&(P& + %((P&( − %(P&& < 0                            (7) 

which must hold given interior solutions. Totally differentiating the first-order condition, 

we have 

 45

46
= FE;:W:XE::W;W:FE:W;:

FY
=

FH;:
H:

W:X
H::
H:

W;W:FW;:

F Z
H:

 

 < 0	if	and	only	if	P&( > −E;:
E:
+ E::

E:
P& P( > 0.                         (8) 

This result presents the possibility that a positive productivity shock reduces emissions 

and pecuniary income. 



4 

 

Proposition 3. If the impact of a positive productivity shock on marginal productivity 

is sufficiently negative, i.e., if '&( <
9:9;;
9;

− − E;:
E:
+ E::

E:
P& P('&( < 0, then it reduces 

both emissions and pecuniary income. 

Proof. Note P& =
&

9;
= E;

E:
. Under the condition of the proposition, 45

46
< 0. By Proposition 

1,  48
46
< 0.    □ 

This intuition of Proposition 3 is as follows: As the “expansion” effect always pushes 

the optimal income rightwards, the only source of a potential reduction in income is the 

“substitution” effect. When the marginal productivity is sufficiently low, i.e., when the 

slope of the possibility frontier is sufficiently steep, the “substitution” effect results in an 

optimal outcome with a lower income. A reduction in income can thus happen only when 

the positive productivity shock sufficiently reduces marginal productivity. Given the 

positive productivity shock, a lower pecuniary income also suggests that emissions must 

have decreased. 

A direct implication of Proposition 3 given the result from Proposition 2 is that 

reductions in both emissions and income can happen only when the initial income is 

sufficiently high. 
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B. Tests for Parallel Trends 

Since different counties were connected to the expressways in different years, we can test 

the the parallel-trend assumption using an event study approach, following Jacobson et al. 

(1993). Specifically, we estimate the following equation: 

bcd = ecd
f ∙ hf

fij
fkFj,flF& + md + nc + ocd     

where bcd represents the outcomes of interests in county p in year q. The dummy variables 

ecd
f  is defined in the following way: for county i, which was never or always connected 

by an expressway within the sample period, ecdf = 0 for any k and t. For county i, which 

was connected by an expressway within  the sample period, we first define #c as the year 

in which this county was first connected to the expressway network, and we then define 

ecd
Fj = 1 if q − #c ≤ −5, and 0 otherwise; ecdf = 1 if q − #c = s, and 0 otherwise, where 

s = −4,−3,−2, 0, 1, 2, 3, 4; and ecdv = 1 if q − #c ≥ 5, and 0 otherwise. The county fixed 

effect is nc; the year fixed effect is md. 

Note that the dummy for s = −1 is omitted in the equation, and the post-treatment 

effects are therefore relative to the year immediately prior to expressway connection. The 

parameter of interest hf  dynamically estimates the effect of expressway connection 

k years after it first gains an expressway connection. We include leads of first expressway 

connection in the equation, testing whether this treatment has an impact on outcomes up 

to five years prior to actual connection. A test of the parallel-trend assumption is that the 

“placebo” leads of the treatments have no impact on the outcomes, i.e. hf = 0 for all s ≤

−2.  

The regression results are represented in Appendix Table B. We find that the estimated 

coefficients of the placebo leads (we include 5 leads in the regressions) are not 

statistically different from zero, suggesting that there are no systematic differences in the 

pre-treatment trends between the control and connected groups for both emission and 
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GDP measures.1 After three to four years of connection, expressway connection dummies 

become statistically significant. This is reasonable because it takes time for connected 

regions to adjust their production plans. 
  

                                                
1 The coefficient of the placebo lead (>=5 years) is statistically significant at 10% level for per capita 

COD emission. That suggests five or more year ago, the connected counties and unconnected counties were 
slightly different in terms of per capita COD emission. We think this is not threatening our identification 
strategy, because the rest of coefficients of the placebo leads, which were closer to the actual connection 
time, are all statistically insignificant.  
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C. Identifying Treatment Status for Each County 

One caveat of this dataset is that expressway connection information is not available for 

all years. While the study period ranges from 2000 to 2012, we lack expressway data for 

2001, 2004, 2006, 2008 and 2009.We interpolated data for these years by considering 

three different scenarios to create a balanced panel dataset.   

We will use 2001 as an example. First, if a county was connected before 2001 (1992-

2000), then it must be connected in 2001 as well. Second, if a county was not connected 

in 2000 or 2002, we can infer that it was not connected in 2001. Third, for a small set of 

counties, the data show that they had expressway connections in 2002 but not in 2000, so 

there are two possibilities: (a) these counties were connected in 2002, or (b) in 2001.  

Theoretically, this uncertainty creates a measurement error in the treatment status on 

the first year when a county was connected. However, only a small portion of the 

connected counties (12%) in the data fall into the third category. In our main analysis, we 

assume that a county was connected in the latter year for which the data are available, 

using possibility (a) to determine the treatment status. We then check the robustness of 

our findings using the alternative possibility (b) and find that it has a negligible impact on 

our estimations. The results using (b) are reported in Appendix Table D. 

We do not have expressway data for two consecutive years in 2008 and 2009, 

requiring slight changes to the method of interpolation. Firstly, we interpolated counties 

in both 2008 and 2009 as having an expressway connection if the counties had 

expressway connections in 2007. Secondly, counties without an expressway connection 

in both 2007 and 2010 were interpolated as also not having an expressway connection in 

2008 and 2009. Finally, a few counties that had expressway connections in 2007 but not 

in 2010 were again further categorized into three scenarios: (a) the expressway 

connection was created in 2008; (b) in 2009; and (c) in 2010. However, we also find that 
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these slight alterations to the treatment status of this small set of counties does not affect 

our main regression results. 
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D. Test for Parallel Trends for Sub-groups 

One concern relates to the identifying assumption for the heterogeneous effects. Although 

the non-connected counties can serve as a suitable control group for the connected 

counties as a whole, as suggested in Appendix Table C, this does not necessarily imply 

that they are suitable control groups for each sub-group in the connected counties. In 

other words, we need to test whether there is a trend break for all of the sub-groups in the 

connected counties and show that the expressway effects are zero before connection. To 

do so, we conduct separate event-studies for each outcome variable in Table 3 and for 

each income group, as discussed above. Then, in each regression, we include five placebo 

leads and five lags of the treatment dummy using equation (4) and test whether the leads 

and lags of the treatment dummy are statistically significantly different from zero.  

This process gives us 80 coefficients of the leads of the treatment (as lead = 1 is 

dropped from the regression) and 100 coefficients of the lags of the treatment in total. A 

classic result in statistics is that, under null hypothesis, the p-values based on a 

continuous test statistic are uniformly distributed from 0 to 1 (e.g., Hung et al., 1997). 

Therefore, if the p-values of the 80 coefficients of the leads of the treatment is uniformly 

distributed from 0 to 1, we can be more confident that the sub-group parallel trend 

assumption holds. This is exactly what we observe in the data: as shown in the upper 

panel of Appendix Figure 3, the p-values of the estimated coefficients for the leads are 

evenly distributed from 0 to 1. In sharp contrast, the distribution of the p-values of the 

100 coefficients for the lags, as shown in the bottom panel of Appendix Figure 3, is 

skewed to the left, with a large portion falling between 0 and 0.1. This pattern confirms 

that the treatment effect for each sub-group is mostly statistically significant. We also 

conduct a formal Kolmogorov–Smirnov test with the null hypothesis being that the p-

values are uniformly distributed from 0 to 1 for both cases, and we cannot reject that null 

hypothesis for leads but reject the null for lags. 
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APPENDIX FIGURE 1. EXPANSION OF THE NATIONAL EXPRESSWAY SYSTEM IN CHINA 
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APPENDIX FIGURE 2. AN EXTREME EXAMPLE WITH ZERO INITIAL INCOME 
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APPENDIX FIGURE 3. DISTRIBUTIONS OF P-VALUES FOR LEADS AND LAGS OF THE TREATMENT 
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Appendix Table A. China’s Expressways and Main Controlling Nodes (Cities) 

# Main controlling nodes Length 
(km) 

M1 Beijing, Tianjin, Cangzhou, Dezhou, Ji'nan, Tai'an, Linyi, Huai’an, Jiangdu, Jiangyin, Wuxi, Suzhou, Shanghai 1245 

M2 Beijing, Tianjin, Cangzhou, Dezhou, Ji'nan, Tai'an, Qufu, Xuzhou, Bengbu, Hefei, Tongling, Huangshan, Quzhou, Nanping, 
Fuzhou 2030 

M3 Beijing, Baoding, Shijiazhuang, Handan, Xinxiang, Zhengzhou, Luohe, Xinyang, Wuhan, Xianning, Yueyang, Changsha, 
Zhuzhou, Hengyang, Chenzhou, Shaoguan, Guangzhou, Shenzhen, Hong Kong (Port), Macao (Port) 2285 

M4 Beijing, Baoding, Shijiazhuang, Taiyuan, Linfen, Xi'an, Hanzhong, Guangyuan, Mianyang, Chengdu, Ya'an, Xichang, Panzhihua, 
Kunming 2865 

M5 Beijing, Zhangjiakou, Ji'ning, Hohhot, Baotou, Linhe, Wuhai, Yinchuan, Zhongning, Baiyin, Lanzhou, Xi'ning, Geermu, Lhasa 3710 
M6 Beijing, Zhangjiakou, Ji'ning, Hohhot, Baotou, Linhe, Ejina Qi, Hami, Turpan, Urumqi 2540 
M7 Beijing, Tangshan, Qinhuangdao, Jinzhou, Shenyang, Siping, Changchun, Harbin 1280 
M11 Hegang, Jiamusi, Jixi, Mudanjiang, Dunhua, Tonghua, Dandong, Dalian 1390 

M15 
Shenyang, Liaoyang, Anshan, Haicheng, Dalian, Yantai, Qingdao, Rizhao, Lianyungang, Yancheng, Nantong, Changshu, 
Taicang, Shanghai, Ningbo, Taizhou, Wenzhou, Fuzhou, Xiamen, Shantou, Shanwei, Shenzhen, Guangzhou, Foshan, Kaiping, 
Yangjiang, Maoming, Zhanjiang, Haikou 

3710 

M21 
Changchun, Shuangliao, Fuxin, Chaoyang, Chengde, Tangshan, Tianjin, Huanghua, Binzhou, Qingzhou, Laiwu, Linyi, 
Lianyungang, Huai’an, Nanjing, Yixing, Huzhou, Hangzhou, Jinhua, Lishui, Nanping, Sanming, Longyan, Meizhou, Heyuan, 
Huizhou, Shenzhen 

3580 

M25 Ji'nan, Heze, Shangqiu, Fuyang, Lu'an, Anqing, Jingdezhen, Yingtan, Nancheng, Ruijin, Heyuan, Guangzhou 2110 

M31 Daqing, Songyuan, Shuangliao, Tongliao, Chifeng, Chengde, Beijing, Bazhou, Hengshui, Puyang, Kaifeng, Zhoukou, Macheng, 
Huangshi, Ji'an, Ganzhou, Lianping, Guangzhou 3550 

M35 Erenhot, Ji'ning, Datong, Taiyuan, Changzhi, Jincheng, Luoyang, Pingdingshan, Nanyang, Xiangfan, Jingzhou, Changde, Loudi, 
Shaoyang, Yongzhou, Lianzhou, Guangzhou 2685 

M41 Baotou, Ordos, Yulin, Yan'an, Tongchuan, Xi'an, Ankang, Dazhou, Chongqin, Qianjiang, Jishou, Huaihua, Guilin, Wuzhou, 
Maoming 3130 

M45 Lanzhou, Guangyuan, Nanchong, Chongqing, Zunyi, Guiyang, Majiang, Duyun, Hechi, Nanning, Beihai, Zhanjiang, Haikou 2570 
M51 Chongqing, Neijiang, Yibin, Zhaotong, Kunming 838 
Source: The National Expressway Network Plan, Ministry of Transport Planning Academe of China, 2004. 
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Appendix Table A (continued). China’s Expressways and Main Controlling Nodes (Cities) 

# Main controlling nodes Length 
(km) 

M10 Suifenhe (Port), Mudanjiang, Harbin, Daqing, Qiqihar, Manzhouli (Port) 1520 

M16 Hunchun (Port), Dunhua, Jilin, Changchun, Songyuan, Baicheng, Ulanhot 885 

M20 Dandong, Haicheng, Panjin, Jinzhou, Chaoyang, Chifeng, Xilinhot 960 
M26 Rongcheng, Wendeng, Weihai, Yantai, Dongying, Huanghua, Tianjin, Bazhou, Laiyuan, Shuozhou, Ordos, Wuhai 1820 

M30 Qingdao, Weifang, Zibo, Ji'nan, Shijiazhuang, Taiyuan, Lishi, Jingbian, Dingbian, Yinchuan 1600 

M36 Qingdao, Laiwu, Tai'an, Liaocheng, Handan, Changzhi, Linfen, Fuxian, Qingyang, Pingliang, Dingxi, Lanzhou 1795 

M40 Lianyungang, Xuzhou, Shangqiu, Kaifeng, Zhengzhou, Luoyang, Xi'an, Baoji, Tianshui, Lanzhou, Wuwei, Jiayuguan, Hami, Turpan, 
Urumqi, Kuytun, Khorgas (Port) 4280 

M46 Nanjing, Bengbu, Fuyang, Zhoukou, Luohe, Pingdingshan, Luoyang 712 
M48 Shanghai, Chongming, Nantong, Yangzhou, Nanjing, Hefei, Lu'an, Xinyang, Nanyang, Shangzhou, Xi'an 1490 

M50 Shanghai, Suzhou, Wuxi, Changzhou, Nanjing, Hefei, Lu'an, Macheng, Wuhan, Xiaogan, Jingmen, Yichang, Wanzhou, Dianjiang, 
Guang'an, Nanchong, Suining, Chengdu 1960 

M52 Shanghai, Huzhou, Xuancheng, Wuhu, Tongling, Anqing, Huangmei, Huangshi, Wuhan, Jingzhou, Yichang, Enshi, Zhongxian, 
Dianjiang, Chongqing 1900 

M56 Hangzhou, Huangshan, Jingdezhen, Jiujiang, Xianning, Yueyang, Changde, Jishou, Zunyi, Bijie, Liupanshui, Qujing, Kunming, 
Chuxiong, Dali, Ruili (Port) 3405 

M60 Shanghai, Hangzhou, Jinhua, Quzhou, Yingtan, Nanchang, Yichun, Changsha, Shaoyang, Huaihua, Guiyang, Anshun, Qujing, 
Kunming 2370 

M66 Fuzhou, Nanping, Nancheng, Nanchang, Jiujiang, Huangmei, Huangshi, Wuhan, Xiaogan, Xiangfan, Shiyan, Shangzhou, Xi'an, 
Pingliang, Zhongning, Yinchuan 2485 

M68 Quanzhou, Yong'an, Ji'an, Hengyang, Yongzhou, Guilin, Liuzhou, Nanning 1635 

M70 Xiamen, Zhangzhou, Longyan, Ruijin, Ganzhou, Chenzhou, Guilin, Majiang, Guiyang, Bijie, Luzhou, Longchang, Neijiang, Chengdu 2295 

M72 Shantou, Meizhou, Shaoguan, Hezhou, Liuzhou, Hechi, Xingyi, Shilin, Kunming 1710 

M76 Guangzhou, Zhaoqin, Wuzhou, Yulin, Nanning, Baise, Funing, Kaiyuan, Shilin, Kunming 1610 
Source: The National Expressway Network Plan, Ministry of Transport Planning Academe of China, 2004. 
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Appendix Table B. Event Study: Effects of Expressway Connection 

 
COD emissions (tons, 

log) 
Per capita COD emissions 

(kg, log) 
GDP (million yuan, 

log) 
Per capita GDP  

(yuan, log) 

 (1) (2) (3) (4) 
>= 5 Years before 0.18 0.29* -0.01 -0.02 

 (0.12) (0.15) (0.04) (0.04) 
4 Years before 0.10 0.16 0.01 -0.00 

 (0.09) (0.10) (0.02) (0.02) 
3 Years before 0.04 0.10 -0.00 -0.00 

 (0.05) (0.07) (0.01) (0.01) 
2 Years before 0.02 0.04 -0.00 -0.01 

 (0.06) (0.06) (0.01) (0.01) 
Year of connection -0.08* -0.08* 0.00 -0.00 

 (0.04) (0.04) (0.01) (0.01) 
1 Year later -0.04 -0.04 -0.01 -0.01 

 (0.07) (0.09) (0.01) (0.01) 
2 Years later -0.15** -0.20** -0.01 -0.01 

 (0.07) (0.08) (0.01) (0.01) 
3 Years later -0.17** -0.21** -0.02** -0.02 

 (0.08) (0.08) (0.01) (0.01) 
4 Years later -0.27*** -0.37*** -0.05*** -0.04** 

 (0.09) (0.11) (0.02) (0.02) 
County FE Y Y Y Y 
Year FE Y Y Y Y 
Obs. 18,810 18,378 19,835 19,472 
R2 0.08 0.08 0.91 0.90 
Notes: We conduct an event study by including leads and lags of the first expressway connection dummy in the regressions. The 
dummy indicating one-year-prior treatment status is omitted from the regression. Standard errors are clustered at the county level and 
reported in the parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table C. Heterogeneous Treatment Effect across Initial Emissions 

�  

COD emissions (tons, 
log) 

 Per capita COD 
emissions (kg, log) GDP (yuan, log) Per capita GDP  

(yuan, log) 

�  (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway -0.18*** 2.02*** -0.25*** 2.12*** -0.01 0.07** -0.01 0.07* 

 (0.06) (0.18) (0.07) (0.21) (0.01) (0.03) (0.01) (0.04) 
Expressway*initial emissions  -0.35***  -0.37***  -0.01**  -0.01** 

(ton, log, year 2000)  (0.02) �  (0.03)  (0.01)  (0.01) 
County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 

Obs. 18,810 16,579 18,378 16,246 19,835 16,820 19,472 16,558 
R2 0.08 0.10 0.08 0.09 0.91 0.91 0.90 0.90 
Notes: This table estimates the heterogeneous impacts of expressway connection on COD emissions and GDP. Standard errors are 
clustered at the county level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table D.  Treatment Effect Using an Alternative Expressway Connection Dummy 

�  

COD emission (tons, 
log) 

 Per capita COD emissions 
(kg, log) GDP (yuan, log) Per capita GDP (yuan, 

log) 

�  (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway -0.18*** 3.13*** -0.25*** 3.73*** -0.03** 0.90*** -0.02 1.18*** 

 (0.06) (0.75) (0.07) (0.82) (0.01) (0.17) (0.01) (0.18) 
Expressway*GDP pc  -0.40***  -0.48***  -0.11***  -0.14*** 

(yuan, log, year 2000)  (0.09) �  (0.10)  (0.02)  (0.02) 
County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 

Obs. 18,810 18,179 18,378 18,007 19,835 19,213 19,472 19,091 
R2 0.08 0.08 0.08 0.08 0.91 0.91 0.90 0.90 
Notes: This table estimates the heterogeneous impacts of expressway connection on COD emissions and GDP using a different 
expressway connection dummy. Standard errors are clustered at the county level and reported in the parentheses below the estimated 
coefficients. *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table E. Explore the Channels: Heterogeneous Effects of Expressway Connection 

  

COD Emission Intensity 
(ton, log) 

Share of the Secondary 
Industry (%, log) 

Number of Key 
Polluting Firms (log) 

Output Value of Key 
Polluting Firms 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Expressway -0.16*** 2.67*** 0.00 0.54*** 0.02 0.96*** -0.07** 0.72* 

 (0.06) (0.75) (0.01) (0.13) (0.02) (0.27) (0.04) (0.40) 
Expressway*GDP pc  -0.34***  -0.06***  -0.11***  -0.09** 
(yuan, log, Year 2000)  (0.09)   (0.02)   (0.03)   (0.05) 
County FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 

Obs. 18,768 18,139 10,202 9,914 18,810 18,179 18,809 18,178 
R2 0.09 0.09 0.19 0.19 0.41 0.42 0.57 0.58 
Notes: Standard errors are clustered at county level and reported in the parentheses below the estimated coefficients. *** p<0.01, ** 
p<0.05, * p<0.1. 

 


